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Abstract
In this chapter, we mathematically describe general features of explicit DEM simulations, with some
reference to Yade implementation of these algorithms. They are given roughly in the order as they
appear in the simulation loop: collisions detection, creating new interactions and determining their
properties, kinematics representation, contact law, forces applied on particles.
Keywords: Yade, discrete element method, finite differences, collisions, contact representation.
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Chapter 1

DEM Background

In this chapter, we mathematically describe general features of explicit DEM simulations, with some
reference to Yade implementation of these algorithms. They are given roughly in the order as they
appear in simulation; first, two particles might establish a new interaction, which consists in

1. detecting collision between particles;
2. creating new interaction and determining its properties (such as stiffness); they are either precom-

puted or derived from properties of both particles;
Then, for already existing interactions, the following is performed:

1. strain evaluation;
2. stress computation based on strains;
3. force application to particles in interaction.

This simplified description serves only to give meaning to the ordering of sections within this chapter.
A more detailed description of this simulation loop is given later.

1.1 Collision detection

1.1.1 Generalities

Exact computation of collision configuration between two particles can be relatively expensive (for in-
stance between Sphere and Facet). Taking a general pair of bodies i and j and their ‘‘exact” (In the
sense of precision admissible by numerical implementation.) spatial predicates (called Shape in Yade)
represented by point sets Pi, Pj the detection generally proceeds in 2 passes:

1. fast collision detection using approximate predicate P̃i and P̃j; they are pre-constructed in such a
way as to abstract away individual features of Pi and Pj and satisfy the condition

∀x ∈ R3 : x ∈ Pi ⇒ x ∈ P̃i (1.1)

(likewise for Pj). The approximate predicate is called ‘‘bounding volume” (Bound in Yade) since it
bounds any particle’s volume from outside (by virtue of the implication). It follows that (Pi∩Pj) 6=
∅ ⇒ (P̃i ∩ P̃j) 6= ∅ and, by applying modus tollens,(

P̃i ∩ P̃j

)
= ∅ ⇒ (

Pi ∩ Pj

)
= ∅ (1.2)

which is a candidate exclusion rule in the proper sense.
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2. By filtering away impossible collisions in (1.2), a more expensive, exact collision detection algo-
rithms can be run on possible interactions, filtering out remaining spurious couples (P̃i ∩ P̃j) 6=
∅∧

(
Pi∩Pj

)
= ∅. These algorithms operate on Pi and Pj and have to be able to handle all possible

combinations of shape types.
It is only the first step we are concerned with here.

1.1.2 Algorithms

Collision evaluation algorithms have been the subject of extensive research in fields such as robotics,
computer graphics and simulations. They can be roughly divided in two groups:
Hierarchical algorithms which recursively subdivide space and restrict the number of approximate

checks in the first pass, knowing that lower-level bounding volumes can intersect only if they
are part of the same higher-level bounding volume. Hierarchy elements are bounding volumes of
different kinds: octrees [Jung1997], bounding spheres [Hubbard1996], k-DOP’s [Klosowski1998].

Flat algorithms work directly with bounding volumes without grouping them in hierarchies first; let
us only mention two kinds commonly used in particle simulations:

Sweep and prune algorithm operates on axis-aligned bounding boxes, which overlap
if and only if they overlap along all axes. These algorithms have roughly O(n logn)
complexity, where n is number of particles as long as they exploit temporal coherence
of the simulation.

Grid algorithms represent continuous R3 space by a finite set of regularly spaced
points, leading to very fast neighbor search; they can reach the O(n) complexity
[Munjiza1998] and recent research suggests ways to overcome one of the major draw-
backs of this method, which is the necessity to adjust grid cell size to the largest
particle in the simulation ([Munjiza2006], the ‘‘multistep” extension).

Temporal coherence expresses the fact that motion of particles in simulation is not arbitrary but
governed by physical laws. This knowledge can be exploited to optimize performance.

Numerical stability of integrating motion equations dictates an upper limit on ∆t (sect. sect-formulation-
dt) and, by consequence, on displacement of particles during one step. This consideration is taken into
account in [Munjiza2006], implying that any particle may not move further than to a neighboring grid
cell during one step allowing the O(n) complexity; it is also explored in the periodic variant of the sweep
and prune algorithm described below.
On a finer level, it is common to enlarge P̃i predicates in such a way that they satisfy the (1.1) condition
during several timesteps; the first collision detection pass might then be run with stride, speeding up
the simulation considerably. The original publication of this optimization by Verlet [Verlet1967] used
enlarged list of neighbors, giving this technique the name Verlet list. In general cases, however, where
neighbor lists are not necessarily used, the term Verlet distance is employed.

1.1.3 Sweep and prune

Let us describe in detail the sweep and prune algorithm used for collision detection in Yade (class
InsertionSortCollider). Axis-aligned bounding boxes (Aabb) are used as P̃i; each Aabb is given by lower
and upper corner ∈ R3 (in the following, P̃x0

i , P̃x1
i are minimum/maximum coordinates of P̃i along the

x-axis and so on). Construction of Aabb from various particle Shape‘s (such as Sphere, Facet, Wall)
is straightforward, handled by appropriate classes deriving form BoundFunctor (Bo1_Sphere_Aabb,
Bo1_Facet_Aabb, …).
Presence of overlap of two Aabb‘s can be determined from conjunction of separate overlaps of intervals
along each axis (fig-sweep-and-prune):(

P̃i ∩ P̃j

)
6= ∅ ⇔ ∧

w∈{x,y,z}

[((
P̃w0
i , P̃w1

i

)
∩
(
P̃w0
j , P̃w1

j

))
6= ∅

]

2 Chapter 1. DEM Background
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Figure 1.1: Sweep and prune algorithm (shown in 2D), where Aabb of each sphere is represented by
minimum and maximum value along each axis. Spatial overlap of Aabb‘s is present if they overlap along
all axes. In this case, P̃1 ∩ P̃2 6= ∅ (but note that P1 ∩ P2 = ∅) and P̃2 ∩ P̃3 6= ∅.}

where (a, b) denotes interval in R.
The collider keeps 3 separate lists (arrays) Lw for each axis w ∈ {x, y, z}

Lw =
∪
i

{
P̃w0
i , P̃w1

i

}

where i traverses all particles. Lw arrays (sorted sets) contain respective coordinates of minimum and
maximum corners for each Aabb (we call these coordinates bound in the following); besides bound, each
of list elements further carries id referring to particle it belongs to, and a flag whether it is lower or
upper bound.
In the initial step, all lists are sorted (using quicksort, average O(n logn)) and one axis is used to create
initial interactions: the range between lower and upper bound for each body is traversed, while bounds
in-between indicate potential Aabb overlaps which must be checked on the remaining axes as well.
At each successive step, lists are already pre-sorted. Inversions occur where a particle’s coordinate has
just crossed another particle’s coordinate; this number is limited by numerical stability of simulation and
its physical meaning (giving spatio-temporal coherence to the algorithm). The insertion sort algorithm
swaps neighboring elements if they are inverted, and has complexity between bigO{n} and bigO{n^2},
for pre-sorted and unsorted lists respectively. For our purposes, we need only to handle inversions, which
by nature of the sort algorithm are detected inside the sort loop. An inversion might signify:

• overlap along the current axis, if an upper bound inverts (swaps) with a lower bound (i.e. that the
upper bound with a higher coordinate was out of order in coming before the lower bound with a
lower coordinate). Overlap along the other 2 axes is checked and if there is overlap along all axes,
a new potential interaction is created.

• End of overlap along the current axis, if lower bound inverts (swaps) with an upper bound. If there
is only potential interaction between the two particles in question, it is deleted.

• Nothing if both bounds are upper or both lower.

1.1. Collision detection 3
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Aperiodic insertion sort

Let us show the sort algorithm on a sample sequence of numbers:

|| 3 7 2 4 ||

Elements are traversed from left to right; each of them keeps inverting (swapping) with neighbors to the
left, moving left itself, until any of the following conditions is satisfied:

(≤) the sorting order with the left neighbor is correct, or
(||) the element is at the beginning of the sequence.

We start at the leftmost element (the current element is marked i )

|| 3 7 2 4 ||.

It obviously immediately satisfies (||), and we move to the next element:

|| 3 7
≤

gg 2 4 ||.

Condition (≤) holds, therefore we move to the right. The 2 is not in order (violating (≤)) and two
inversions take place; after that, (||) holds:

|| 3 7 2
6≤

hh 4 ||,

|| 3 2
6≤

hh 7 4 ||,

|| 2 3 7 4 ||.

The last element 4 first violates (≤), but satisfies it after one inversion

|| 2 3 7 4
6≤

hh ||,

|| 2 3 4
≤

gg 7 ||.

All elements having been traversed, the sequence is now sorted.
It is obvious that if the initial sequence were sorted, elements only would have to be traversed without
any inversion to handle (that happens in O(n) time).
For each inversion during the sort in simulation, the function that investigates change in Aabb overlap
is invoked, creating or deleting interactions.
The periodic variant of the sort algorithm is described in sect-periodic-insertion-sort, along with other
periodic-boundary related topics.

Optimization with Verlet distances

As noted above, [Verlet1967] explored the possibility of running the collision detection only sparsely by
enlarging predicates P̃i.
In Yade, this is achieved by enlarging Aabb of particles by fixed relative length in all dimensions ∆L

(InsertionSortCollider.sweepLength). Suppose the collider run last time at step m and the current step is

4 Chapter 1. DEM Background
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n. NewtonIntegrator tracks maximum distance traversed by particles (via maximum velocity magnitudes
v◦max = max |u̇◦

i | in each step, with the initial cummulative distance Lmax = 0,

L◦max = L−max + v◦max∆t
◦ (1.3)

triggering the collider re-run as soon as

L◦max > ∆L. (1.4)

The disadvantage of this approach is that even one fast particle determines v◦max.
A solution is to track maxima per particle groups. The possibility of tracking each particle separately
(that is what ESyS-Particle does) seemed to us too fine-grained. Instead, we assign particles to bn

(InsertionSortCollider.nBins) velocity bins based on their current velocity magnitude. The bins’ limit
values are geometrical with the coefficient bc > 1 (InsertionSortCollider.binCoeff), the maximum velocity
being the current global velocity maximum v◦max (with some constraints on its change rate, to avoid large
oscillations); for bin i ∈ {0, . . . , bn} and particle j:

v◦maxb
−(i+1)
c ≤ |u̇◦

j | < vmaxb
−i
c .

(note that in this case, superscripts of bc mean exponentiation). Equations (1.3)–(1.4) are used for each
bin separately; however, when (1.4) is satisfied, full collider re-run is necessary and all bins’ distances
are reset.
Particles in high-speed oscillatory motion could be put into a slow bin if they happen to be at the point
where their instantaneous speed is low, causing the necessity of early collider re-run. This is avoided by
allowing particles to only go slower by one bin rather than several at once.
Results of using Verlet distance depend highly on the nature of simulation and choice of parameters
InsertionSortCollider.nBins and InsertionSortColldier.binCoeff. The binning algorithm was specifically
designed for simulating local fracture of larger concrete specimen; in that way, only particles in the
fracturing zone, with greater velocities, had the Aabb‘s enlarged, without affecting quasi-still particles
outside of this zone. In such cases, up to 50% overall computation time savings were observed, collider
being run every �100 steps in average.

1.2 Creating interaction between particles

Collision detection described above is only approximate. Exact collision detection depends on the ge-
ometry of individual particles and is handled separately. In Yade terminology, the Collider creates only
potential interactions; potential interactions are evaluated exactly using specialized algorithms for colli-
sion of two spheres or other combinations. Exact collision detection must be run at every timestep since
it is at every step that particles can change their mutual position (the collider is only run sometimes if
the Verlet distance optimization is in use). Some exact collision detection algorithms are described in
Strain evaluation; in Yade, they are implemented in classes deriving from IGeomFunctor (prefixed with
Ig2).
Besides detection of geometrical overlap (which corresponds to IGeom in Yade), there are also non-
geometrical properties of the interaction to be determined (IPhys). In Yade, they are computed for
every new interaction by calling a functor deriving from IPhysFunctor (prefixed with Ip2) which accepts
the given combination of Material types of both particles.

1.2.1 Stiffnesses

Basic DEM interaction defines two stiffnesses: normal stiffness KN and shear (tangent) stiffness KT .
It is desirable that KN be related to fictitious Young’s modulus of the particles’ material, while KT is
typically determined as a given fraction of computed KN. The KT/KN ratio determines macroscopic

1.2. Creating interaction between particles 5
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Poisson’s ratio of the arrangement, which can be shown by dimensional analysis: elastic continuum has
two parameters (E and ν) and basic DEM model also has 2 parameters with the same dimensions KN and
KT/KN; macroscopic Poisson’s ratio is therefore determined solely by KT/KN and macroscopic Young’s
modulus is then proportional to KN and affected by KT/KN.
Naturally, such analysis is highly simplifying and does not account for particle radius distribution, packing
configuration and other possible parameters such as the interaction radius introduced later.

Normal stiffness

The algorithm commonly used in Yade computes normal interaction stiffness as stiffness of two springs
in serial configuration with lengths equal to the sphere radii (fig-spheres-contact-stiffness).

E1

E2

l1 = r1 l2 = r2

l = l1 + l2

Figure 1.2: Series of 2 springs representing normal stiffness of contact between 2 spheres.

Let us define distance l = l1+ l2, where li are distances between contact point and sphere centers, which
are initially (roughly speaking) equal to sphere radii. Change of distance between the spehre centers ∆l

is distributed onto deformations of both spheres ∆l = ∆l1 + ∆l2 proportionally to their compliances.
Displacement change ∆li generates force Fi = Ki∆li, where Ki assures proportionality and has physical
meaning and dimension of stiffness; Ki is related to the sphere material modulus Ei and some length l̃i
proportional to ri.

∆l = ∆l1 + ∆l2

Ki = Eil̃i

KN∆l = F = F1 = F2

KN (∆l1 + ∆l2) = F

KN

(
F

K1

+
F

K2

)
= F

K−1
1 + K−1

2 = K−1
N

KN =
K1K2

K1 + K2

KN =
E1l̃1E2l̃2

E1l̃1 + E2l̃2

The most used class computing interaction properties Ip2_FrictMat_FrictMat_FrictPhys uses l̃i = 2ri.
Some formulations define an equivalent cross-section Aeq, which in that case appears in the l̃i term as
Ki = Eil̃i = Ei

Aeq
li

. Such is the case for the concrete model (Ip2_CpmMat_CpmMat_CpmPhys), where
Aeq = min(r1, r2).
For reasons given above, no pretense about equality of particle-level Ei and macroscopic modulus E should
be made. Some formulations, such as [Hentz2003], introduce parameters to match them numerically.
This is not appropriate, in our opinion, since it binds those values to particular features of the sphere
arrangement that was used for calibration.

6 Chapter 1. DEM Background
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1.2.2 Other parameters

Non-elastic parameters differ for various material models. Usually, though, they are averaged from
the particles’ material properties, if it makes sense. For instance, Ip2_CpmMat_CpmMat_CpmPhys
averages most quantities, while Ip2_FrictMat_FrictMat_FrictPhys computes internal friction angle as
ϕ = min(ϕ1, ϕ2) to avoid friction with bodies that are frictionless.

1.3 Strain evaluation

In the general case, mutual configuration of two particles has 6 degrees of freedom (DoFs) just like a
beam in 3D space: both particles have 6 DoFs each, but the interaction itself is free to move and rotate
in space (with both spheres) having 6 DoFs itself; then 12− 6 = 6. They are shown at fig-spheres-dofs.

initial configuration

twisting (1DoF)

normal straining (1DoF) shearing (2 DoFs)

bending (2 DoFs)

Figure 1.3: Degrees of freedom of configuration of two spheres. Normal strain appears if there is a
difference of linear velocity along the interaction axis (n); shearing originates from the difference of
linear velocities perpendicular to n and from the part of ω1+ω2 perpendicular to n; twisting is caused
by the part of ω1 −ω2 parallel with n; bending comes from the part of ω1 −ω2 perpendicular to n.

We will only describe normal and shear components of strain in the following, leaving torsion and bending
aside. The reason is that most constitutive laws for contacts do not use the latter two.

1.3.1 Normal strain

Constants

Let us consider two spheres with initial centers C̄1, C̄2 and radii r1, r2 that enter into contact. The
order of spheres within the contact is arbitrary and has no influence on the behavior. Then we define
lengths

d0 = |C̄2 − C̄1|

d1 = r1 +
d0 − r1 − r2

2
, d2 = d0 − d1.

These quantities are constant throughout the life of the interaction and are computed only once when
the interaction is established. The distance d0 is the reference distance and is used for the conversion
of absolute displacements to dimensionless strain, for instance. It is also the distance where (for usual
contact laws) there is neither repulsive nor attractive force between the spheres, whence the name
equilibrium distance.
Distances d1 and d2 define reduced (or expanded) radii of spheres; geometrical radii r1 and r2 are used
only for collision detection and may not be the same as d1 and d2, as shown in fig. fig-sphere-sphere.

1.3. Strain evaluation 7
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d0 = d1 + d2

C̄2C̄1

d1 d2

r1

r2

C̄

Figure 1.4: Geometry of the initial contact of 2 spheres; this case pictures spheres which already overlap
when the contact is created (which can be the case at the beginning of a simulation) for the sake of
generality. The initial contact point C̄ is in the middle of the overlap zone.

This difference is exploited in cases where the average number of contacts between spheres should be
increased, e.g. to influence the response in compression or to stabilize the packing. In such case,
interactions will be created also for spheres that do not geometrically overlap based on the interaction
radius RI, a dimensionless parameter determining „non-locality“ of contact detection. For RI = 1, only
spheres that touch are considered in contact; the general condition reads

d0 ≤ RI(r1 + r2). (1.5)

The value of RI directly influences the average number of interactions per sphere (percolation), which
for some models is necessary in order to achieve realistic results. In such cases, Aabb (or P̃i predicates
in general) must be enlarged accordingly (Bo1_Sphere_Aabb.aabbEnlargeFactor).

Contact cross-section

Some constitutive laws are formulated with strains and stresses (Law2_Dem3DofGeom_CpmPhys_-
Cpm, the concrete model described later, for instance); in that case, equivalent cross-section of the
contact must be introduced for the sake of dimensionality. The exact definition is rather arbitrary; the
CPM model (Ip2_CpmMat_CpmMat_CpmPhys) uses the relation

Aeq = πmin(r1, r2)2 (1.6)

which will be used to convert stresses to forces, if the constitutive law used is formulated in terms of
stresses and strains. Note that other values than π can be used; it will merely scale macroscopic packing
stiffness; it is only for the intuitive notion of a truss-like element between the particle centers that we
choose Aeq representing the circle area. Besides that, another function than min(r1, r2) can be used,
although the result should depend linearly on r1 and r2 so that the equation gives consistent results if
the particle dimensions are scaled.

Variables

The following state variables are updated as spheres undergo motion during the simulation (as C◦
1 and

C◦
2 change):

n◦ =
C◦

2 −C◦
1

|C◦
2 −C◦

1|
≡ ̂C◦

2 −C◦
1 (1.7)

and

C◦ = C◦
1 +

(
d1 −

d0 − |C◦
2 −C◦

1|

2

)
n. (1.8)

8 Chapter 1. DEM Background
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The contact point C◦ is always in the middle of the spheres’ overlap zone (even if the overlap is neg-
ative, when it is in the middle of the empty space between the spheres). The contact plane is always
perpendicular to the contact plane normal n◦ and passes through C◦.
Normal displacement and strain can be defined as

uN = |C◦
2 −C◦

1|− d0,

εN =
uN

d0

=
|C◦

2 −C◦
1|

d0

− 1.

Since uN is always aligned with n, it can be stored as a scalar value multiplied by n if necessary.
For massively compressive simulations, it might be beneficial to use the logarithmic strain, such that the
strain tends to −∞ (rather than −1) as centers of both spheres approach. Otherwise, repulsive force
would remain finite and the spheres could penetrate through each other. Therefore, we can adjust the
definition of normal strain as follows:

εN =

{
log

(
|C◦

2−C◦
1|

d0

)
if |C◦

2 −C◦
1| < d0

|C◦
2−C◦

1|

d0
− 1 otherwise.

Such definition, however, has the disadvantage of effectively increasing rigidity (up to infinity) of contacts,
requiring ∆t to be adjusted, lest the simulation becomes unstable. Such dynamic adjustment is possible
using a stiffness-based time-stepper (GlobalStiffnessTimeStepper in Yade).

1.3.2 Shear strain

In order to keep uT consistent (e.g. that uT must be constant if two spheres retain mutually constant
configuration but move arbitrarily in space), then either uT must track spheres’ spatial motion or must
(somehow) rely on sphere-local data exclusively.
These two possibilities lead to two algorithms of computing shear strains. They should give the same
results (disregarding numerical imprecision), but there is a trade-off between computational cost of the
incremental method and robustness of the total one.
Geometrical meaning of shear strain is shown in fig-shear-2d.

uT

C

n

Figure 1.5: Evolution of shear displacement uT due to mutual motion of spheres, both linear and
rotational. Left configuration is the initial contact, right configuration is after displacement and rotation
of one particle.

Incremental algorithm

The incremental algorithm is widely used in DEM codes and is described frequently ([Luding2008],
[Alonso2004]). Yade implements this algorithm in the ScGeom class. At each step, shear displacement
uT is updated; the update increment can be decomposed in 2 parts: motion of the interaction (i.e. C

and n) in global space and mutual motion of spheres.

1.3. Strain evaluation 9
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1. Contact moves dues to changes of the spheres’ positions C1 and C2, which updates current C◦

and n◦ as per (1.8) and (1.7). u−
T is perpendicular to the contact plane at the previous step n−

and must be updated so that u−
T + (∆uT ) = u◦

T ⊥ n◦; this is done by perpendicular projection to
the plane first (which might decrease |uT |) and adding what corresponds to spatial rotation of the
interaction instead:

(∆uT )1 = −u−
T × (n− × n◦)

(∆uT )2 = −u−
T ×

(
∆t

2
n◦ · (ω	

1 +ω	
2 )

)
n◦

2. Mutual movement of spheres, using only its part perpendicular to n◦; v12 denotes mutual velocity
of spheres at the contact point:

v12 =
(
v	2 +ω−

2 × (−d2n
◦)
)
−
(
v	1 +ω	

1 × (d1n
◦)
)

v⊥12 = v12 − (n◦ · v12)n◦

(∆uT )3 = −∆tv⊥12

Finally, we compute

u◦
T = u−

T + (∆uT )1 + (∆uT )2 + (∆uT )3.

Total algorithm

The following algorithm, aiming at stabilization of response even with large rotation speeds or ∆t ap-
proaching stability limit, was designed in [Smilauer2010b]. (A similar algorithm based on total formu-
lation, which covers additionally bending and torsion, was proposed in [Wang2009].) It is based on
tracking original contact points (with zero shear) in the particle-local frame.
In this section, variable symbols implicitly denote their current values unless explicitly stated otherwise.
Shear strain may have two sources: mutual rotation of spheres or transversal displacement of one sphere
with respect to the other. Shear strain does not change if both spheres move or rotate but are not in
linear or angular motion mutually. To accurately and reliably model this situation, for every new contact
the initial contact point C̄ is mapped into local sphere coordinates (p01, p02). As we want to determine
the distance between both points (i.e. how long the trajectory in on both spheres’ surfaces together),
the shortest path from current C to the initial locally mapped point on the sphere’s surface is „unrolled“
to the contact plane (p ′

01, p ′
02); then we can measure their linear distance uT and define shear strain

εT = uT/d0 (fig. fig-shear-displacement).
More formally, taking C̄i, q̄i for the sphere initial positions and orientations (as quaterions) in global
coordinates, the initial sphere-local contact point orientation (relative to sphere-local axis x̂) is remem-
bered:

n̄ = ̂C1 −C2,

q̄01 = Align(x̂, q̄∗
1n̄q̄

∗∗
1 ),

q̄02 = Align(x̂, q̄∗
2(−n̄)q̄∗∗

2 ).

After some spheres motion, the original point can be “unrolled” to the current contact plane:

q = Align(n, q1q̄01x̂(q1q̄01)
∗) (auxiliary)

p ′
01 = qϑd1(qu × n)

where qu, qϑ are axis and angle components of q and p ′
01 is the unrolled point. Similarly,

q = Align(n, q2q̄02x̂(q2q̄02)
∗)

p ′
02 = qϑd1(qu × (−n)).

10 Chapter 1. DEM Background
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Shear displacement and strain are then computed easily:

uT = p ′
02 − p ′

01

εT =
uT

d0

When using material law with plasticity in shear, it may be necessary to limit maximum shear strain,
in which case the mapped points are moved closer together to the requested distance (without changing
ûT ). This allows us to remember the previous strain direction and also avoids summation of increments
of plastic strain at every step (fig-shear-slip).

C1

C2

p02

p01

p ′
01

p ′
02

uT

contact plane

Figure 1.6: Shear displacement computation for two spheres in relative motion.

This algorithm is straightforwardly modified to facet-sphere interactions. In Yade, it is implemented by
Dem3DofGeom and related classes.

1.4 Stress evaluation (example)

Once strain on a contact is computed, it can be used to compute stresses/forces acting on both spheres.
The constitutive law presented here is the most usual DEM formulation, originally proposed by Cundall.
While the strain evaluation will be similar to algorithms described in the previous section regardless
of stress evaluation, stress evaluation itself depends on the nature of the material being modeled. The
constitutive law presented here is the most simple non-cohesive elastic case with dry friction, which
Yade implements in Law2_Dem3DofGeom_FrictPhys_Basic (all constitutive laws derive from base class
LawFunctor).
In DEM generally, some constitutive laws are expressed using strains and stresses while others prefer
displacement/force formulation. The law described here falls in the latter category.
When new contact is established (discussed in sect-simulation-loop) it has its properties (IPhys) computed
from Materials associated with both particles. In the simple case of frictional material FrictMat, Ip2_-
FrictMat_FrictMat_FrictPhys creates a new FrictPhys instance, which defines normal stiffness KN, shear
stiffness KT and friction angle ϕ.
At each step, given normal and shear displacements uN, uT , normal and shear forces are computed (if

1.4. Stress evaluation (example) 11
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contact plane

C1

C2

requested
max |uT |

old p01

old p02

p01

p02

p ′
01

p ′
02

old p ′
01

old p ′
02

uT

Figure 1.7: Shear plastic slip for two spheres.

uN > 0, the contact is deleted without generating any forces):

FN = KNuNn,

FtT = KTuT

where FN is normal force and FT is trial shear force. A simple non-associated stress return algorithm is
applied to compute final shear force

FT =

{
FtT

|FN| tan ϕ

Ft
T

if |FT | > |FN| tanϕ,

FtT otherwise.

Summary force F = FN + FT is then applied to both particles – each particle accumulates forces and
torques acting on it in the course of each step. Because the force computed acts at contact point C,
which is difference from spheres’ centers, torque generated by F must also be considered.

F1+ = F F2+ = −F

T1+ = d1(−n)× F T2+ = d2n× F.

1.5 Motion integration

Each particle accumulates generalized forces (forces and torques) from the contacts in which it partici-
pates. These generalized forces are then used to integrate motion equations for each particle separately;
therefore, we omit i indices denoting the i-th particle in this section.
The customary leapfrog scheme (also known as the Verlet scheme) is used, with some adjustments for
rotation of non-spherical particles, as explained below. The “leapfrog” name comes from the fact that
even derivatives of position/orientation are known at on-step points, whereas odd derivatives are known
at mid-step points. Let us recall that we use a−, a◦, a+ for on-step values of a at t− ∆t, t and t+ ∆t

respectively; and a	, a⊕ for mid-step values of a at t− ∆t/2, t+ ∆t/2.
Described integration algorithms are implemented in the NewtonIntegrator class in Yade.

12 Chapter 1. DEM Background
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1.5.1 Position

Integrating motion consists in using current acceleration ü◦ on a particle to update its position from the
current value u◦ to its value at the next timestep u+. Computation of acceleration, knowing current
forces F acting on the particle in question and its mass m, is simply

ü◦ = F/m.

Using the 2nd order finite difference with step ∆t, we obtain

ü◦ ∼=
u− − 2u◦ + u+

∆t2

from which we express

u+ = 2u◦ − u− + ü◦
∆t2 =

= u◦ + ∆t

(
u◦ − u−

∆t
+ ü◦

∆t

)
︸ ︷︷ ︸

(†)

.

Typically, u− is already not known (only u◦ is); we notice, however, that

u̇	 ' u◦ − u−

∆t
,

i.e. the mean velocity during the previous step, which is known. Plugging this approximate into the (†)
term, we also notice that mean velocity during the current step can be approximated as

u̇⊕ ' u̇	 + ü◦
∆t,

which is (†); we arrive finally at

u+ = u◦ + ∆t
(
u̇
	 + ü

◦
∆t

)
.

The algorithm can then be written down by first computing current mean velocity u̇
⊕ which we need to

store for the next step (just as we use its old value u̇	 now), then computing the position for the next
time step u+:

u̇
⊕ = u̇

	 + ü
◦
∆t

u+ = u◦ + u̇
⊕
∆t.

Positions are known at times i∆t (if ∆t is constant) while velocities are known at i∆t+ ∆t
2

. The facet that
they interleave (jump over each other) in such way gave rise to the colloquial name “leapfrog” scheme.

1.5.2 Orientation (spherical)

Updating particle orientation q◦ proceeds in an analogous way to position update. First, we compute
current angular acceleration ω̇

◦ from known current torque T . For spherical particles where the inertia
tensor is diagonal in any orientation (therefore also in current global orientation), satisfying I11 = I22 =
I33, we can write

ω̇◦
i = T i/I11,

1.5. Motion integration 13
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We use the same approximation scheme, obtaining an equation analogous to (??)

ω⊕ = ω	 + ∆tω̇
◦
.

The quaternion ∆q representing rotation vector ω⊕∆t is constructed, i.e. such that

(∆q)ϑ = |ω⊕|,

(∆q)u = ω̂⊕

Finally, we compute the next orientation q+ by rotation composition

q+ = ∆qq◦.

1.5.3 Orientation (aspherical)

Integrating rotation of aspherical particles is considerably more complicated than their position, as their
local reference frame is not inertial. Rotation of rigid body in the local frame, where inertia matrix I is
diagonal, is described in the continuous form by Euler’s equations (i ∈ {1, 2, 3} and i, j, k are subsequent
indices):

T i = Iiiω̇i + (Ikk − Ijj)ωjωk.

Due to the presence of the current values of both ω and ω̇, they cannot be solved using the standard
leapfrog algorithm (that was the case for translational motion and also for the spherical bodies’ rotation
where this equation reduced to T = Iω̇).
The algorithm presented here is described by [Allen1989] (pg. 84–89) and was designed by Fincham
for molecular dynamics problems; it is based on extending the leapfrog algorithm by mid-step/on-step
estimators of quantities known at on-step/mid-step points in the basic formulation. Although it has
received criticism and more precise algorithms are known ([Omelyan1999], [Neto2006], [Johnson2008]),
this one is currently implemented in Yade for its relative simplicity.
Each body has its local coordinate system based on the principal axes of inertia for that body. We use •̃ to
denote vectors in local coordinates. The orientation of the local system is given by the current particle’s
orientation q◦ as a quaternion; this quaternion can be expressed as the (current) rotation matrix A.
Therefore, every vector a is transformed as ã = qaq∗ = Aa. Since A is a rotation (orthogonal) matrix,
the inverse rotation A−1 = AT .
For given particle in question, we know

• Ĩ
◦

(constant) inertia matrix; diagonal, since in local, principal coordinates,
• T◦ external torque,
• q◦ current orientation (and its equivalent rotation matrix A),
• ω	 mid-step angular velocity,
• L	 mid-step angular momentum; this is an auxiliary variable that must be tracked in addition for

use in this algorithm. It will be zero in the initial step.
Our goal is to compute new values of the latter three, that is L⊕, q+, ω⊕. We first estimate current
angular momentum and compute current local angular velocity:

L◦ = L	 + T◦∆t

2
, L̃

◦
= AL◦,

L⊕ = L	 + T◦∆t, L̃
⊕
= AL⊕,

ω̃
◦
= Ĩ

◦−1L̃
◦
,

ω̃
⊕
= Ĩ

◦−1L̃
⊕
.
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Then we compute q̇◦, using q◦ and ω̃
◦:

q̇◦
w

q̇◦
x

q̇◦
y

q̇◦
z

 =
1

2


q◦
w −q◦

x −q◦
y −q◦

z

q◦
x q◦

w −q◦
z q◦

y

q◦
y q◦

z q◦
w −q◦

x

q◦
z −q◦

y q◦
x q◦

w




0

ω̃
◦
x

ω̃
◦
y

ω̃
◦
z

 ,

q⊕ = q◦ + q̇◦∆t

2
.

We evaluate q̇⊕ from q⊕ and ω̃
⊕ in the same way as in (??) but shifted by ∆t/2 ahead. Then we can

finally compute the desired values

q+ = q◦ + q̇⊕∆t,

ω⊕ = A−1ω̃
⊕

1.5.4 Clumps (rigid aggregates)

DEM simulations frequently make use of rigid aggregates of particles to model complex shapes [Price2007]
called clumps, typically composed of many spheres. Dynamic properties of clumps are computed from
the properties of its members: the clump’s mass mc is summed over members, the inertia tensor Ic with
respect to the clump’s centroid is computed using the parallel axes theorem; local axes are oriented such
that they are principal and inertia tensor is diagonal and clump’s orientation is changed to compensate
rotation of the local system, as to not change the clump members’ positions in global space. Initial
positions and orientations of all clump members in local coordinate system are stored.
In Yade (class Clump), clump members behave as stand-alone particles during simulation for purposes of
collision detection and contact resolution, except that they have no contacts created among themselves
within one clump. It is at the stage of motion integration that they are treated specially. Instead of inte-
grating each of them separately, forces/torques on those particles Fi, T i are converted to forces/torques
on the clump itself. Let us denote ri relative position of each particle with regards to clump’s centroid,
in global orientation. Then summary force and torque on the clump are

Fc =
∑

Fi,

Tc =
∑

ri × Fi + Ti.

Motion of the clump is then integrated, using aspherical rotation integration. Afterwards, clump members
are displaced in global space, to keep their initial positions and orientations in the clump’s local coordinate
system. In such a way, relative positions of clump members are always the same, resulting in the behavior
of a rigid aggregate.

1.5.5 Numerical damping

In simulations of quasi-static phenomena, it it desirable to dissipate kinetic energy of particles. Since
most constitutive laws (including Law_ScGeom_FrictPhys_Basic shown above, sect-formulation-stress-
cundall) do not include velocity-based damping (such as one in [Addetta2001]), it is possible to use
artificial numerical damping. The formulation is described in [Pfc3dManual30], although our version
is slightly adapted. The basic idea is to decrease forces which increase the particle velocities and vice
versa by (∆F)d, comparing the current acceleration sense and particle velocity sense. This is done by
component, which makes the damping scheme clearly non-physical, as it is not invariant with respect to
coordinate system rotation; on the other hand, it is very easy to compute. Cundall proposed the form
(we omit particle indices i since it applies to all of them separately):

(∆F)dw
Fw

= −λd sgn(Fwu̇	
w), w ∈ {x, y, z}

where λd is the damping coefficient. This formulation has several advantages [Hentz2003]:
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• it acts on forces (accelerations), not constraining uniform motion;
• it is independent of eigenfrequencies of particles, they will be all damped equally;
• it needs only the dimensionless parameter λd which does not have to be scaled.

In Yade, we use the adapted form

(∆F)dw
Fw

= −λd sgn Fw

(
u̇	
w +

ü◦
w∆t

2

)
︸ ︷︷ ︸

'u̇◦
w

,
(1.9)

where we replaced the previous mid-step velocity u̇	 by its on-step estimate in parentheses. This is to
avoid locked-in forces that appear if the velocity changes its sign due to force application at each step,
i.e. when the particle in question oscillates around the position of equilibrium with 2∆t period.
In Yade, damping (1.9) is implemented in the NewtonIntegrator engine; the damping coefficient λd is
NewtonIntegrator.damping.

1.5.6 Stability considerations

Critical timestep

In order to ensure stability for the explicit integration sceheme, an upper limit is imposed on ∆t:

∆tcr =
2

ωmax
(1.10)

where ωmax is the highest eigenfrequency within the system.

Single mass-spring system

Single 1D mass-spring system with mass m and stiffness K is governed by the equation

mẍ = −Kx

where x is displacement from the mean (equilibrium) position. The solution of harmonic oscillation is
x(t) = A cos(ωt+ϕ) where phase ϕ and amplitude A are determined by initial conditions. The angular
frequency

ω(1) =

√
K

m
(1.11)

does not depend on initial conditions. Since there is one single mass, ω(1)
max = ω(1). Plugging (1.11) into

(1.10), we obtain

∆t(1)cr = 2/ω(1)
max = 2

√
m/K

for a single oscillator.

General mass-spring system

In a general mass-spring system, the highest frequency occurs if two connected masses mi, mj are in
opposite motion; let us suppose they have equal velocities (which is conservative) and they are connected
by a spring with stiffness Ki: displacement ∆xi of mi will be accompained by ∆xj = −∆xi of mj, giving
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∆Fi = −Ki(∆xi − (−∆xi)) = −2Ki∆xi. That results in apparent stiffness K
(2)
i = 2Ki, giving maximum

angular frequency of the whole system

ωmax = max
i

√
K
(2)
i /mi.

The overall critical timestep is then

∆tcr =
2

ωmax
= min

i
2

√
mi

K
(2)
i

= min
i

2

√
mi

2Ki

= min
i

√
2

√
mi

Ki

. (1.12)

This equation can be used for all 6 degrees of freedom (DOF) in translation and rotation, by considering
generalized mass and stiffness matrices M and K, and replacing fractions mi

Ki
by eigen values of K.M−1.

The critical timestep is then associated to the eigen mode with highest frequency :

∆tcr = min∆tcrk, k ∈ {1, ..., 6}. (1.13)

DEM simulations

In DEM simulations, per-particle stiffness Kij is determined from the stiffnesses of contacts in which
it participates [Chareyre2005]. Suppose each contact has normal stiffness KNk, shear stiffness KTk =
ξKNk and is oriented by normal nk. A translational stiffness matrix Kij can be defined as the sum of
contributions of all contacts in which it participates (indices k), as

Kij =
∑
k

(KNk − KTk)ninj + KTk =
∑
j

KNk ((1− ξ)ninj + ξ) (1.14)

with i and j ∈ {x, y, z}. Equations (1.13) and (1.14) determine ∆tcr in a simulation. A similar approach
generalized to all 6 DOFs is implemented by the GlobalStiffnessTimeStepper engine in Yade. The
derivation of generalized stiffness including rotational terms is very similar but not developped here, for
simplicity. For full reference, see “PFC3D - Theoretical Background”.
Note that for computation efficiency reasons, eigenvalues of the stiffness matrices are not computed.
They are only approximated assuming than DOF’s are uncoupled, and using diagonal terms of K.M−1.
They give good approximates in typical mechanical systems.
There is one important condition that ωmax > 0: if there are no contacts between particles and ωmax = 0,
we would obtain value ∆tcr = ∞. While formally correct, this value is numerically erroneous: we were
silently supposing that stiffness remains constant during each timestep, which is not true if contacts are
created as particles collide. In case of no contact, therefore, stiffness must be pre-estimated based on
future interactions, as shown in the next section.

Estimation of ∆tcr by wave propagation speed

Estimating timestep in absence of interactions is based on the connection between interaction stiffnesses
and the particle’s properties. Note that in this section, symbols E and ρ refer exceptionally to Young’s
modulus and density of particles, not of macroscopic arrangement.
In Yade, particles have associated Material which defines density ρ (Material.density), and also may
define (in ElastMat and derived classes) particle’s “Young’s modulus” E (ElastMat.young). ρ is used
when particle’s mass m is initially computed from its ρ, while E is taken in account when creating new
interaction between particles, affecting stiffness KN. Knowing m and KN, we can estimate (1.14) for
each particle; we obviously neglect

• number of interactions per particle Ni; for a “reasonable” radius distribution, however, there is a
geometrically imposed upper limit (6 for a packing of spheres with equal radii, for instance);

• the exact relationship the between particles’ rigidities Ei, Ej, supposing only that KN is somehow
proportional to them.
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By defining E and ρ, particles have continuum-like quantities. Explicit integration schemes for continuum
equations impose a critical timestep based on sonic speed

√
E/ρ; the elastic wave must not propagate

farther than the minimum distance of integration points lmin during one step. Since E, ρ are parameters
of the elastic continuum and lmin is fixed beforehand, we obtain

∆t(c)cr = lmin

√
ρ

E
.

For our purposes, we define E and ρ for each particle separately; lmin can be replaced by the sphere’s
radius Ri; technically, lmin = 2Ri could be used, but because of possible interactions of spheres and facets
(which have zero thickness), we consider lmin = Ri instead. Then

∆t(p)cr = min
i

Ri

√
ρi

Ei

.

This algorithm is implemented in the utils.PWaveTimeStep function.
Let us compare this result to (1.12); this necessitates making several simplifying hypotheses:

• all particles are spherical and have the same radius R;
• the sphere’s material has the same E and ρ

• the average number of contacts per sphere is N;
• the contacts have sufficiently uniform spatial distribution around each particle;
• the ξ = KN/KT ratio is constant for all interactions;
• contact stiffness KN is computed from E using a formula of the form

KN = Eπ ′R ′, (1.15)

where π ′ is some constant depending on the algorithm in usefootnote{For example, π ′ = π/2

in the concrete particle model (Ip2_CpmMat_CpmMat_CpmPhys), while π ′ = 2 in the classical
DEM model (Ip2_FrictMat_FrictMat_FrictPhys) as implemented in Yade.} and R ′ is half-distance
between spheres in contact, equal to R for the case of interaction radius RI = 1. If RI = 1 (and
R ′ ≡ R by consequence), all interactions will have the same stiffness KN. In other cases, we will
consider KN as the average stiffness computed from average R ′ (see below).

As all particles have the same parameters, we drop the i index in the following formulas.
We try to express the average per-particle stiffness from (1.14). It is a sum over all interactions where KN

and ξ are scalars that will not rotate with interaction, while nw is w-th component of unit interaction
normal n. Since we supposed uniform spatial distribution, we can replace n2

w by its average value n2
w.

Recognizing components of n as direction cosines, the average values of n2
w is 1/3. %we find the average

value by integrating over all possible orientations, which are uniformly distributed in space:
Moreover, since all directions are equal, we can write the per-body stiffness as K = Kw for all w ∈ {x, y, z}.
We obtain

K =
∑

KN

(
(1− ξ)

1

3
+ ξ

)
=

∑
KN

1− 2ξ

3

and can put constant terms (everything) in front of the summation.
∑

1 equals the number of contacts
per sphere, i.e. N. Arriving at

K = NKN

1− 2ξ

3
,
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we substitute K into (1.12) using (1.15):

∆tcr =
√
2

√
m

K
=

√
2

√
4
3
πR3ρ

NEπ ′R1−2ξ
3

= R

√
ρ

E︸ ︷︷ ︸
∆t

(p)
cr

2

√
π/π ′

N(1− 2ξ)
.

The ratio of timestep ∆t
(p)
cr predicted by the p-wave velocity and numerically stable timestep ∆tcr is the

inverse value of the last (dimensionless) term:

∆t
(p)
cr

∆tcr
= 2

√
N(1+ ξ)

π/π ′ .

Actual values of this ratio depend on characteristics of packing N, KN/KT = ξ ratio and the way of
computing contact stiffness from particle rigidity. Let us show it for two models in Yade:
Concrete particle model computes contact stiffness from the equivalent area Aeq first (1.6),

Aeq = πR2KN =
AeqE

d0

.

d0 is the initial contact length, which will be, for interaction radius (1.5) RI > 1, in average larger
than 2R. For RI = 1.5 (sect.~ref{sect-calibration-elastic-properties}), we can roughly estimate
d0 = 1.25 · 2R = 5

2
R, getting

KN = E

(
2

5
π

)
R

where 2
5
π = π ′ by comparison with (1.15).

Interaction radius RI = 1.5 leads to average N ≈ 12 interactions per sphere for dense packing of
spheres with the same radius R. ξ = 0.2 is calibrated (sect.~ref{sect-calibration-elastic-properties})
to match the desired macroscopic Poisson’s ratio ν = 0.2.
Finally, we obtain the ratio

∆t
(p)
cr

∆tcr
= 2

√
12(1− 2 · 0.2)

π
(2/5)π

= 3.39,

showing significant overestimation by the p-wave algorithm.
Non-cohesive dry friction model is the basic model proposed by Cundall explained in ref{sect-

formulation-stress-cundall}. Supposing almost-constant sphere radius R and rather dense packing,
each sphere will have N = 6 interactions on average (that corresponds to maximally dense packing
of spheres with a constant radius). If we use the Ip2_FrictMat_FrictMat_FrictPhys class, we have
π ′ = 2, as KN = E2R; we again use ξ = 0.2 (for lack of a more significant value). In this case, we
obtain the result

∆t
(p)
cr

∆tcr
= 2

√
6(1− 2 · 0.2)

π/2
= 3.02

which again overestimates the numerical critical timestep.
To conclude, p-wave timestep gives estimate proportional to the real ∆tcr, but in the cases shown, the
value of about ∆t = 0.3∆t

(p)
cr should be used to guarantee stable simulation.
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Non-elastic ∆t constraints

Let us note at this place that not only ∆tcr assuring numerical stability of motion integration is a
constraint. In systems where particles move at relatively high velocities, position change during one
timestep can lead to non-elastic irreversible effects such as damage. The ∆t needed for reasonable result
can be lower ∆tcr. We have no rigorously derived rules for such cases.

1.6 Periodic boundary conditions

While most DEM simulations happen in R3 space, it is frequently useful to avoid boundary effects by
using periodic space instead. In order to satisfy periodicity conditions, periodic space is created by
repetition of parallelepiped-shaped cell. In Yade, periodic space is implemented in the Cell class. The
geometry of the cell in the reference coordinates system is defined by three edges of the parallepiped.
The corresponding base vectors are stored in the columns of matrix H (Cell.hSize).
The initial H can be explicitely defined as a 3x3 matrix at the begining of the simulation. There are no
restricitions on the possible shapes: any parallelepiped is accepted as the initial cell. If the base vectors
are axis-aligned, defining only their sizes can be more convenient than defining the full H matrix; in that
case it is enough to define the norms of columns in H (see Cell.size).
After the definition of the initial cell’s geometry, H should generally not be modified by direct assignment.
Instead, its deformation rate will be defined via the velocity gradient Cell.velGrad described below. It
is the only variable that let the period deformation be correctly accounted for in constitutive laws and
Newton integrator (NewtonIntegrator).

1.6.1 Deformations handling

The deformation of the cell over time is defined via a matrix representing the gradient of an homoge-
neous velocity field ∇v (Cell.velGrad). This gradient represents arbitrary combinations of rotations and
stretches. It can be imposed externaly or updated by boundary controllers (see PeriTriaxController or
Peri3dController) in order to reach target strain values or to maintain some prescribed stress.
The velocity gradient is integrated automatically over time, and the cumulated transformation is reflected
in the transformation matrix F (Cell.trsf) and the current shape of the cell H. The per-step transformation
update reads (it is similar for H), with I the identity matrix:

F+ = (I+∇v∆t)F◦.

F can be set back to identity at any point in simulations, in order to define the current state as reference
for strains definition in boundary controllers. It will have no effect on H.
Along with the automatic integration of cell transformation, there is an option to homothetically displace
all particles so that ∇v is applied over the whole simulation (enabled via Cell.homoDeform). This avoids
all boundary effects coming from change of the velocity gradient.

1.6.2 Collision detection in periodic cell

In usual implementations, particle positions are forced to be inside the cell by wrapping their positions
if they get over the boundary (so that they appear on the other side). As we wanted to avoid abrupt
changes of position (it would make particle’s velocity inconsistent with step displacement change), a
different method was chosen.

Approximate collision detection

Pass 1 collision detection (based on sweep and prune algorithm, sect.~ref{sect-sweep-and-prune}) oper-
ates on axis-aligned bounding boxes (Aabb) of particles. During the collision detection phase, bounds of
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all Aabb’s are wrapped inside the cell in the first step. At subsequent runs, every bound remembers by
how many cells it was initially shifted from coordinate given by the Aabb and uses this offset repeatedly
as it is being updated from Aabb during particle’s motion. Bounds are sorted using the periodic insertion
sort algorithm (sect.~ref{sect-periodic-insertion-sort}), which tracks periodic cell boundary ||.
Upon inversion of two Aabb‘s, their collision along all three axes is checked, wrapping real coordinates
inside the cell for that purpose.
This algorithm detects collisions as if all particles were inside the cell but without the need of constructing
“ghost particles” (to represent periodic image of a particle which enters the cell from the other side) or
changing the particle’s positions.
It is required by the implementation (and partly by the algorithm itself) that particles do not span more
than half of the current cell size along any axis; the reason is that otherwise two (or more) contacts
between both particles could appear, on each side. Since Yade identifies contacts by Body.id of both
bodies, they would not be distinguishable.
In presence of shear, the sweep-and-prune collider could not sort bounds independently along three axes:
collision along x axis depends on the mutual position of particles on the y axis. Therefore, bounding boxes
are expressed in transformed coordinates which are perpendicular in the sense of collision detection. This
requires some extra computation: Aabb of sphere in transformed coordinates will no longer be cube,
but cuboid, as the sphere itself will appear as ellipsoid after transformation. Inversely, the sphere in
simulation space will have a parallelepiped bounding “box”, which is cuboid around the ellipsoid in
transformed axes (the Aabb has axes aligned with transformed cell basis). This is shown in fig. fig-cell-
shear-aabb.
The restriction of a single particle not spanning more than half of the transformed axis becomes stringent
as Aabb is enlarged due to shear. Considering Aabb of a sphere with radius r in the cell where x ′ ≡ x,
z ′ ≡ z, but 6 (y, y ′) = ϕ, the x-span of the Aabb will be multiplied by 1/ cosϕ. For the infinite shear
ϕ → π/2, which can be desirable to simulate, we have 1/ cosϕ → ∞. Fortunately, this limitation can be
easily circumvented by realizing the quasi-identity of all periodic cells which, if repeated in space, create
the same grid with their corners: the periodic cell can be flipped, keeping all particle interactions intact,
as shown in fig. fig-cell-flip. It only necessitates adjusting the Interaction.cellDist of interactions and
re-initialization of the collider (Collider::invalidatePersistentData). Cell flipping is implemented
in the utils.flipCell function.

y ′
1

y ′
2

x ′
1 x ′

2 ≡ x ′
1

ϕ1

y y
ϕ2

Figure 1.8: Flipping cell (utils.flipCell) to avoid infinite stretch of the bounding boxes’ spans with
growing ϕ. Cell flip does not affect interactions from the point of view of the simulation. The periodic
arrangement on the left is the same as the one on the right, only the cell is situated differently between
identical grid points of repetition; at the same time |ϕ2| < |ϕ1| and sphere bounding box’s x-span
stretched by 1/ cosϕ becomes smaller. Flipping can be repeated, making effective infinite shear possible.

This algorithm is implemented in InsertionSortCollider and is used whenever simulation is periodic
(Omega.isPeriodic); individual BoundFunctor’s are responsible for computing sheared Aabb’s; currently
it is implemented for spheres and facets (in Bo1_Sphere_Aabb and Bo1_Facet_Aabb respectively).
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y ≡ y ′ y y ′

x ≡ x ′ x

x ′

Figure 1.9: Constructing axis-aligned bounding box (Aabb) of a sphere in simulation space coordinates
(without periodic cell – left) and transformed cell coordinates (right), where collision detection axes x ′,
y ′ are not identical with simulation space axes x, y. Bounds’ projection to axes is shown by orange lines.

Exact collision detection

When the collider detects approximate contact (on the Aabb level) and the contact does not yet exist,
it creates potential contact, which is subsequently checked by exact collision algorithms (depending
on the combination of Shapes). Since particles can interact over many periodic cells (recall we never
change their positions in simulation space), the collider embeds the relative cell coordinate of particles
in the interaction itself (Interaction.cellDist) as an integer vector c. Multiplying current cell size Ts by c

component-wise, we obtain particle offset ∆x in aperiodic R3; this value is passed (from InteractionLoop)
to the functor computing exact collision (IGeomFunctor), which adds it to the position of the particle
Interaction.id2.
By storing the integral offset c, ∆x automatically updates as cell parameters change.

Periodic insertion sort algorithm

The extension of sweep and prune algorithm (described in Sweep and prune) to periodic boundary
conditions is non-trivial. Its cornerstone is a periodic variant of the insertion sort algorithm, which
involves keeping track of the “period” of each boundary; e.g. taking period 〈0, 10), then 81 ≡ −22 < 22
(subscript indicating period). Doing so efficiently (without shuffling data in memory around as bound
wraps from one period to another) requires moving period boundary rather than bounds themselves and
making the comparison work transparently at the edge of the container.
This algorithm was also extended to handle non-orthogonal periodic Cell boundaries by working in trans-
formed rather than Cartesian coordinates; this modifies computation of Aabb from Cartesian coordinates
in which bodies are positioned (treated in detail in Approximate collision detection).
The sort algorithm is tracking Aabb extrema along all axes. At the collider’s initialization, each value is
assigned an integral period, i.e. its distance from the cell’s interior expressed in the cell’s dimension along
its respective axis, and is wrapped to a value inside the cell. We put the period number in subscript.
Let us give an example of coordinate sequence along x axis (in a real case, the number of elements would
be even, as there is maximum and minimum value couple for each particle; this demonstration only
shows the sorting algorithm, however.)

41 122 || −12 −24 50

with cell x-size sx = 10. The 41 value then means that the real coordinate xi of this extremum is
xi + 1 · 10 = 4, i.e. xi = −4. The || symbol denotes the periodic cell boundary.
Sorting starts from the first element in the cell, i.e. right of ||, and inverts elements as in the aperiodic
variant. The rules are, however, more complicated due to the presence of the boundary ||:

22 Chapter 1. DEM Background



Yade: DEM Formulation, Release 1st edition

(≤) stop inverting if neighbors are ordered;
(||•) current element left of || is below 0 (lower period boundary); in this case, decrement element’s

period, decrease its coordinate by sx and move || right;
(•||) current element right of || is above sx (upper period boundary); increment element’s period,

increase its coordinate by sx and move || left;
(||<) inversion across || must subtract sx from the left coordinate during comparison. If the elements

are not in order, they are swapped, but they must have their periods changed as they traverse
||. Apply (||◦) if necessary;

(||◦) if after (||<) the element that is now right of || has xi < sx, decrease its coordinate by sx and
decrement its period. Do not move ||.

In the first step, (||•) is applied, and inversion with 122 happens; then we stop because of (≤):

41 122 || −12 −24 50,

41 122 91
6≤

jj || −24 50,

41 91
≤

ii 122 || −24 50.

We move to next element −24 ; first, we apply (||•), then invert until (≤):

41 91 122 || −24 50,

41 91 122 83
6≤

jj || 50,

41 91 83
6≤

ii 122 || 50,

41 83
≤

ii 91 122 || 50.

The next element is 50 ; we satisfy (||<), therefore instead of comparing 122 > 50, we must do (122−sx) =

23 ≤ 5; we adjust periods when swapping over || and apply (||◦), turning 122 into 23; then we keep
inverting, until (≤):

41 83 91 122 || 50 ,
6≤

jj

41 83 91 5−1

6≤
jj || 23,

41 83 5−1

6≤
jj 91 || 23,

41 5−1

≤
ii 83 91 || 23.

We move (wrapping around) to 41 , which is ordered:

41

≥

885−1 83 91 || 23

and so is the last element

41 5−1

≤
ii 83 91 || 23.
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1.7 Computational aspects

1.7.1 Cost

The DEM computation using an explicit integration scheme demands a relatively high number of steps
during simulation, compared to implicit scehemes. The total computation time Z of simulation spanning
T seconds (of simulated time), containing N particles in volume V depends on:

• linearly, the number of steps i = T/(st∆tcr), where st is timestep safety factor; ∆tcr can be estimated
by p-wave velocity using E and ρ (sect.~ref{sect-dt-pwave}) as ∆t

(p)
cr = r

√
ρ
E

. Therefore

i =
T

str

√
E

ρ
.

• the number of particles N; for fixed value of simulated domain volume V and particle radius r

N = p
V

4
3
πr3

,

where p is packing porosity, roughly 1
2

for dense irregular packings of spheres of similar radius.
The dependency is not strictly linear (which would be the best case), as some algorithms do not
scale linearly; a case in point is the sweep and prune collision detection algorithm introduced in
:ref:‘sect-sweep-and-prune‘_, with scaling roughly O(N logN).
The number of interactions scales with N, as long as packing characteristics are the same.

• the number of computational cores ncpu; in the ideal case, the dependency would be inverse-linear
were all algorithms parallelized (in Yade, collision detection is not).

Let us suppose linear scaling. Additionally, let us suppose that the material to be simulated (E, ρ) and
the simulation setup (V, T) are given in advance. Finally, dimensionless constants st, p and ncpu will
have a fixed value. This leaves us with one last degree of freedom, r. We may write

Z ∝ iN
1

ncpu
=

T

str

√
E

ρ
p

V
4
3
πr3

1

ncpu
∝ 1

r

1

r3
=

1

r4
.

This (rather trivial) result is essential to realize DEM scaling; if we want to have finer results, refining
the “mesh” by halving r, the computation time will grow 24 = 16 times.
For very crude estimates, one can use a known simulation to obtain a machine “constant”

µ =
Z

Ni

with the meaning of time per particle and per timestep (in the order of 10−6 s for current machines).
µ will be only useful if simulation characteristics are similar and non-linearities in scaling do not have
major influence, i.e. N should be in the same order of magnitude as in the reference case.

1.7.2 Result indeterminism

It is naturally expected that running the same simulation several times will give exactly the same results:
although the computation is done with finite precision, round-off errors would be deterministically the
same at every run. While this is true for single-threaded computation where exact order of all operations
is given by the simulation itself, it is not true anymore in multi-threaded computation which is described
in detail in later sections.
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The straight-forward manner of parallel processing in explicit DEM is given by the possibility of treating
interactions in arbitrary order. Strain and stress is evaluated for each interaction independently, but
forces from interactions have to be summed up. If summation order is also arbitrary (in Yade, forces are
accumulated for each thread in the order interactions are processed, then summed together), then the
results can be slightly different. For instance

(1/10.)+(1/13.)+(1/17.)=0.23574660633484162
(1/17.)+(1/13.)+(1/10.)=0.23574660633484165

As forces generated by interactions are assigned to bodies in quasi-random order, summary force Fi on
the body can be different between single-threaded and multi-threaded computations, but also between
different runs of multi-threaded computation with exactly the same parameters. Exact thread scheduling
by the kernel is not predictable since it depends on asynchronous events (hardware interrupts) and other
unrelated tasks running on the system; and it is thread scheduling that ultimately determines summation
order of force contributions from interactions.

Numerical damping influence

The effect of summation order can be significantly amplified by the usage of a discontinuous damping
function in NewtonIntegrator given in (1.9) as

(∆F)dw
Fw

= −λd sgn Fw

(
u̇	
w +

ü
◦
w∆t

2

)
.

If the sgn argument is close to zero then the least significant finite precision artifact can determine whether
the equation (relative increment of Fw) is +λd or −λd. Given commonly used values of λd = 0.4, it
means that such artifact propagates from least significant place to the most significant one at once.
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