
Yade Reference Documentation

Václav Šmilauer, Emanuele Catalano, Bruno Chareyre, Sergei
Dorofeenko, Jerome Duriez, Anton Gladky, Janek Kozicki, Chiara
Modenese, Luc Scholtès, Luc Sibille, Jan Stránský, Klaus Thoeni

This chapter describes all high level classes and functions, including contact laws, boundary controllers,
pre- and post-processing tools. Keywords: Contact laws, boundary conditions, preprocessing,

postprocessing.

February 17,2011
(1st edition - from release bzr2718)

Editor
Václav Šmilauer
CVUT Prague - lab. 3SR Grenoble University

Authors
Václav Šmilauer
CVUT Prague - lab. 3SR Grenoble University
Emanuele Catalano
Grenoble INP, UJF, CNRS, lab. 3SR
Bruno Chareyre
Grenoble INP, UJF, CNRS, lab. 3SR
Sergei Dorofeenko
IPCP RAS, Chernogolovka
Jerome Duriez
Grenoble INP, UJF, CNRS, lab. 3SR
Anton Gladky
TU Bergakademie Freiberg
Janek Kozicki
Gdansk University of Technology - lab. 3SR Grenoble University
Chiara Modenese
University of Oxford
Luc Scholtès
Grenoble INP, UJF, CNRS, lab. 3SR
Luc Sibille
University of Nantes, lab. GeM
Jan Stránský
CVUT Prague
Klaus Thoeni
University of Newcastle (Australia)

Citing this document
Please use the following reference, as explained at http://yade-dem/doc/citing.html:

V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C.
Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni (2010), Yade Reference Documentation.
In Yade Documentation (V. Šmilauer, ed.), The Yade Project , 1st ed. (http://yade-dem.org/doc/)

http://yade-dem.org/doc/

Abstract
This chapter describes all high level classes and functions, including contact laws, boundary controllers,
pre- and post-processing tools. Keywords: Contact laws, boundary conditions, preprocessing, postpro-
cessing.

Contents

1 Class reference (yade.wrapper module) 1
1.1 Bodies . 1
1.2 Interactions . 10
1.3 Global engines . 23
1.4 Partial engines . 50
1.5 Bounding volume creation . 57
1.6 Interaction Geometry creation . 59
1.7 Interaction Physics creation . 64
1.8 Constitutive laws . 68
1.9 Callbacks . 74
1.10 Preprocessors . 74
1.11 Rendering . 84
1.12 Simulation data . 90
1.13 Other classes . 96

2 Yade modules 103
2.1 yade.eudoxos module . 103
2.2 yade.export module . 105
2.3 yade.linterpolation module . 106
2.4 yade.log module . 107
2.5 yade.pack module . 107
2.6 yade.plot module . 115
2.7 yade.post2d module . 118
2.8 yade.qt module . 121
2.9 yade.timing module . 123
2.10 yade.utils module . 124
2.11 yade.ymport module . 138

3 External modules 141
3.1 miniEigen (math) module . 141
3.2 gts (GNU Triangulated surface) module . 144

Bibliography 155

Python Module Index 161

i

ii

Chapter 1

Class reference (yade.wrapper
module)

1.1 Bodies

1.1.1 Body

class yade.wrapper.Body(inherits Serializable)
A particle, basic element of simulation; interacts with other bodies.
aspherical(=false)

Whether this body has different inertia along principal axes; NewtonIntegrator makes use of
this flag to call rotation integration routine for aspherical bodies, which is more expensive.

bound(=uninitalized)
Bound, approximating volume for the purposes of collision detection.

bounded(=true)
Whether this body should have Body.bound created. Note that bodies without a bound do
not participate in collision detection. (In c++, use Body::isBounded/Body::setBounded)

clumpId
Id of clump this body makes part of; invalid number if not part of clump; see
Body::isStandalone, Body::isClump, Body::isClumpMember properties.
Not meant to be modified directly from Python, use O.bodies.appendClumped instead.

dynamic(=true)
Whether this body will be moved by forces. (In c++, use
Body::isDynamic/Body::setDynamic)

flags(=FLAG_BOUNDED)
Bits of various body-related flags. Do not access directly. In c++, use isDy-
namic/setDynamic, isBounded/setBounded, isAspherical/setAspherical. In python, use
Body.dynamic, Body.bounded, Body.aspherical.

groupMask(=1)
Bitmask for determining interactions.

id(=Body::ID_NONE)
Unique id of this body.

intrs() → list
Return all interactions in which this body participates.

1

Yade Reference Documentation, Release 1st edition

isClump
True if this body is clump itself, false otherwise.

isClumpMember
True if this body is clump member, false otherwise.

isStandalone
True if this body is neither clump, nor clump member; false otherwise.

mask
Shorthand for Body::groupMask

mat
Shorthand for Body::material

material(=uninitalized)
Material instance associated with this body.

shape(=uninitalized)
Geometrical Shape.

state(=new State)
Physical state.

1.1.2 Shape

Shape

Box

Facet

CylinderSphere ChainedCylinder

Wall

Tetra

Clump

class yade.wrapper.Shape(inherits Serializable)
Geometry of a body
color(=Vector3r(1, 1, 1))

Color for rendering (normalized RGB).

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

highlight(=false)
Whether this Shape will be highlighted when rendered.

2 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

wire(=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Box(inherits Shape → Serializable)
Box (cuboid) particle geometry. (Avoid using in new code, prefer Facet instead.
extents(=uninitalized)

Half-size of the cuboid
class yade.wrapper.ChainedCylinder(inherits Cylinder → Sphere → Shape → Serializable)

Geometry of a deformable chained cylinder, using geometry Cylinder.
chainedOrientation(=Quaternionr::Identity())

Deviation of node1 orientation from node-to-node vector
initLength(=0)

tensile-free length, used as reference for tensile strain
class yade.wrapper.Clump(inherits Shape → Serializable)

Rigid aggregate of bodies
members

Return clump members as {‘id1’:(relPos,relOri),...}
class yade.wrapper.Cylinder(inherits Sphere → Shape → Serializable)

Geometry of a cylinder, as Minkowski sum of line and sphere.
length(=NaN)

Length [m]
segment(=Vector3r::Zero())

Length vector
class yade.wrapper.Facet(inherits Shape → Serializable)

Facet (triangular particle) geometry.
vertices(=vector<Vector3r>(3, Vector3r(NaN, NaN, NaN)))

Vertex positions in local coordinates.
class yade.wrapper.Sphere(inherits Shape → Serializable)

Geometry of spherical particle.
radius(=NaN)

Radius [m]
class yade.wrapper.Tetra(inherits Shape → Serializable)

Tetrahedron geometry.
v(=std::vector<Vector3r>(4))

Tetrahedron vertices in global coordinate system.
class yade.wrapper.Wall(inherits Shape → Serializable)

Object representing infinite plane aligned with the coordinate system (axis-aligned wall).
axis(=0)

Axis of the normal; can be 0,1,2 for +x, +y, +z respectively (Body’s orientation is disregarded
for walls)

sense(=0)
Which side of the wall interacts: -1 for negative only, 0 for both, +1 for positive only

1.1. Bodies 3

Yade Reference Documentation, Release 1st edition

1.1.3 State

State

CFpmState

RpmState

ChainedState

CpmState

WireState

class yade.wrapper.State(inherits Serializable)
State of a body (spatial configuration, internal variables).
angMom(=Vector3r::Zero())

Current angular momentum
angVel(=Vector3r::Zero())

Current angular velocity
blockedDOFs

Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() → Vector3
Displacement from reference position (pos - refPos

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

mass(=0)
Mass of this body

ori
Current orientation.

pos
Current position.

refOri(=Quaternionr::Identity())
Reference orientation

refPos(=Vector3r::Zero())
Reference position

rot() → Vector3
Rotation from reference orientation (as rotation vector)

4 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

vel(=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.CFpmState(inherits State → Serializable)
CFpm state information about each body.
None of that is used for computation (at least not now), only for post-processing.
numBrokenCohesive(=0)

Number of broken cohesive links. [-]
class yade.wrapper.ChainedState(inherits State → Serializable)

State of a chained bodies, containing information on connectivity in order to track contacts jumping
over contiguous elements. Chains are 1D lists from which id of chained bodies are retrieved via
:yref:rank<ChainedState::rank>‘ and :yref:chainNumber<ChainedState::chainNumber>‘.
addToChain((int)bodyId) → None

Add body to current active chain
bId(=-1)

id of the body containing - for postLoad operations only
chainNumber(=0)

chain id
rank(=0)

rank in the chain
class yade.wrapper.CpmState(inherits State → Serializable)

State information about body use by cpm-model.
None of that is used for computation (at least not now), only for post-processing.
epsPlBroken(=0)

Plastic strain on contacts already deleted (bogus values)
epsVolumetric(=0)

Volumetric strain around this body (unused for now)
normDmg(=0)

Average damage including already deleted contacts (it is really not damage, but 1-
relResidualStrength now)

normEpsPl(=0)
Sum of plastic strains normalized by number of contacts (bogus values)

numBrokenCohesive(=0)
Number of (cohesive) contacts that damaged completely

numContacts(=0)
Number of contacts with this body

sigma(=Vector3r::Zero())
Normal stresses on the particle

tau(=Vector3r::Zero())
Shear stresses on the particle.

class yade.wrapper.RpmState(inherits State → Serializable)
State information about Rpm body.
specimenMass(=0)

Indicates the mass of the whole stone, which owns the particle.
specimenMaxDiam(=0)

Indicates the maximal diametr of the specimen.

1.1. Bodies 5

Yade Reference Documentation, Release 1st edition

specimenNumber(=0)
The variable is used for particle size distribution analyze. Indicates, to which part of specimen
belongs para of particles.

specimenVol(=0)
Indicates the mass of the whole stone, which owns the particle.

class yade.wrapper.WireState(inherits State → Serializable)
Wire state information of each body.
None of that is used for computation (at least not now), only for post-processing.
numBrokenLinks(=0)

Number of broken links (e.g. number of wires connected to the body which are broken). [-]

1.1.4 Material

Material

RpmMat

FrictMat

ElastMat

MomentMat

CpmMat

WireMat

CFpmMat

NormalInelasticMat

CohFrictMat

ViscElMat

class yade.wrapper.Material(inherits Serializable)
Material properties of a body.
density(=1000)

Density of the material [kg/m³]

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label(=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in MaterialCon-
tainer.

newAssocState() → State
Return new State instance, which is associated with this Material. Some materials have

6 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, … functions
from python).

class yade.wrapper.CFpmMat(inherits FrictMat → ElastMat → Material → Serializable)
cohesive frictional material, for use with other CFpm classes
type(=0)

Type of the particle. If particles of two different types interact, it will be with friction only
(no cohesion).[-]

class yade.wrapper.CohFrictMat(inherits FrictMat → ElastMat → Material → Serializable)

alphaKr(=2.0)
Dimensionless coefficient used for the rolling stiffness.

alphaKtw(=2.0)
Dimensionless coefficient used for the twist stiffness.

etaRoll(=-1.)
Dimensionless coefficient used to calculate the plastic rolling moment (if negative, plasticity
will not be applied).

isCohesive(=true)
momentRotationLaw(=false)

Use bending/twisting moment at contact. The contact will have moments only if both bodies
have this flag true. See CohFrictPhys::cohesionDisablesFriction for details.

normalCohesion(=0)
shearCohesion(=0)

class yade.wrapper.CpmMat(inherits FrictMat → ElastMat → Material → Serializable)
Concrete material, for use with other Cpm classes.
Note: Density is initialized to 4800 kgm�³automatically, which gives approximate 2800 kgm�³ on
0.5 density packing.
The model is contained in externally defined macro CPM_MATERIAL_MODEL, which features
damage in tension, plasticity in shear and compression and rate-dependence. For commercial rea-
sons, rate-dependence and compression-plasticity is not present in reduced version of the model,
used when CPM_MATERIAL_MODEL is not defined. The full model will be described in de-
tail in my (Václav Šmilauer) thesis along with calibration procedures (rigidity, poisson’s ratio,
compressive/tensile strength ratio, fracture energy, behavior under confinement, rate-dependent
behavior).
Even the public model is useful enough to run simulation on concrete samples, such as uniaxial
tension-compression test.
G_over_E(=NaN)

Ratio of normal/shear stiffness at interaction level [-]
dmgRateExp(=0)

Exponent for normal viscosity function. [-]
dmgTau(=-1, deactivated if negative)

Characteristic time for normal viscosity. [s]
epsCrackOnset(=NaN)

Limit elastic strain [-]
isoPrestress(=0)

Isotropic prestress of the whole specimen. [Pa]
neverDamage(=false)

If true, no damage will occur (for testing only).

1.1. Bodies 7

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/concrete/uniax.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/concrete/uniax.py

Yade Reference Documentation, Release 1st edition

plRateExp(=0)
Exponent for visco-plasticity function. [-]

plTau(=-1, deactivated if negative)
Characteristic time for visco-plasticity. [s]

relDuctility(=NaN)
Relative ductility, for damage evolution law peak right-tangent. [-]

sigmaT(=NaN)
Initial cohesion [Pa]

class yade.wrapper.ElastMat(inherits Material → Serializable)
Purely elastic material. The material parameters may have different meanings depending on the
IPhysFunctor used : true Young and Poisson in Ip2_FrictMat_FrictMat_MindlinPhys, or contact
stiffnesses in Ip2_FrictMat_FrictMat_FrictPhys.
poisson(=.25)

Poisson’s ratio [-]
young(=1e9)

Young’s modulus [Pa]
class yade.wrapper.FrictMat(inherits ElastMat → Material → Serializable)

Elastic material with contact friction. See also ElastMat.
frictionAngle(=.5)

Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.
class yade.wrapper.MomentMat(inherits FrictMat → ElastMat → Material → Serializable)

Material for constitutive law of (Plassiard & al., 2009); see Law2_SCG_MomentPhys_Cohesion-
lessMomentRotation for details.
Users can input eta (constant for plastic moment) to Spheres and Boxes. For more complicated
cases, users can modify TriaxialStressController to use different eta values during isotropic com-
paction.
eta(=0)

(has to be stored in this class and not by ContactLaw, because users may want to change its
values before/after isotropic compaction.)

class yade.wrapper.NormalInelasticMat(inherits FrictMat → ElastMat → Material → Serial-
izable)

Material class for particles whose contact obey to a normal inelasticity (governed by this coeff_-
dech).
coeff_dech(=1.0)

=kn(unload) / kn(load)
class yade.wrapper.RpmMat(inherits FrictMat → ElastMat → Material → Serializable)

Rock material, for use with other Rpm classes.
Brittleness(=0)

One of destruction parameters. [-] //(Needs to be reworked)
G_over_E(=1)

Ratio of normal/shear stiffness at interaction level. [-]
exampleNumber(=0)

Number of the specimen. This value is equal for all particles of one specimen. [-]
initCohesive(=false)

The flag shows, whether particles of this material can be cohesive. [-]
stressCompressMax(=0)

Maximal strength for compression. The main destruction parameter. [Pa] //(Needs to be
reworked)

class yade.wrapper.ViscElMat(inherits Material → Serializable)
Material for simple viscoelastic model of contact.

8 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

Note: Shop::getViscoelasticFromSpheresInteraction (and
utils.getViscoelasticFromSpheresInteraction in python) compute kn, cn, ks, cs from analyti-
cal solution of a pair spheres interaction problem.
cn(=NaN)

Normal viscous constant
cs(=NaN)

Shear viscous constant
frictionAngle(=NaN)

Friction angle [rad]
kn(=NaN)

Normal elastic stiffness
ks(=NaN)

Shear elastic stiffness
class yade.wrapper.WireMat(inherits ElastMat → Material → Serializable)

Material for use with the Wire classes
as(=0)

Cross-section area of a single wire used for the computation of the limit normal contact forces.
[m²]

diameter(=0.0027)
(Diameter of the single wire in [m] (the diameter is used to compute the cross-section area of
the wire).

isDoubleTwist(=false)
Type of the mesh. If true two particles of the same material which body ids differ by one will
be considered as double-twisted interaction.

lambdaEps(=0.4)
Parameter between 0 and 1 to reduce the failure strain of the double-twisted wire (as used by
[Bertrand2008]). [-]

lambdak(=0.21)
Parameter between 0 and 1 to compute the elastic stiffness of the double-twisted wire (as used
by [Bertrand2008]): kD = 2(λkkh + (1− λk)k

S). [-]
strainStressValues(=uninitalized)

Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for one single wire. Tension only is considered and the point (0,0) is not needed!

1.1.5 Bound

Bound Aabb

class yade.wrapper.Bound(inherits Serializable)
Object bounding part of space taken by associated body; might be larger, used to optimalize
collision detection
color(=Vector3r(1, 1, 1))

Color for rendering this object

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

1.1. Bodies 9

Yade Reference Documentation, Release 1st edition

dispIndex
Return class index of this instance.

max(=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

min(=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

class yade.wrapper.Aabb(inherits Bound → Serializable)
Axis-aligned bounding box, for use with InsertionSortCollider. (This class is quasi-redundant since
min,max are already contained in Bound itself. That might change at some point, though.)

1.2 Interactions

1.2.1 Interaction

class yade.wrapper.Interaction(inherits Serializable)
Interaction between pair of bodies.
cellDist

Distance of bodies in cell size units, if using periodic boundary conditions; id2 is shifted by
this number of cells from its State::pos coordinates for this interaction to exist. Assigned by
the collider.

Warning: (internal) cellDist must survive Interaction::reset(), it is only initialized in
ctor. Interaction that was cancelled by the constitutive law, was reset() and became only
potential must have thepriod information if the geometric functor again makes it real.
Good to know after few days of debugging that :-)

geom(=uninitalized)
Geometry part of the interaction.

id1(=0)
Id of the first body in this interaction.

id2(=0)
Id of the first body in this interaction.

isReal
True if this interaction has both geom and phys; False otherwise.

iterMadeReal(=-1)
Step number at which the interaction was fully (in the sense of geom and phys) created.
(Should be touched only by IPhysDispatcher and InteractionLoop, therefore they are made
friends of Interaction

phys(=uninitalized)
Physical (material) part of the interaction.

10 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

1.2.2 IGeom

IGeom

Dem3DofGeom

GenericSpheresContact

Dem3DofGeom_SphereSphere

Dem3DofGeom_FacetSphere

L6GeomL3Geom

TTetraGeom ScGeom6DScGeom

Dem3DofGeom_WallSphere

CylScGeom

class yade.wrapper.IGeom(inherits Serializable)
Geometrical configuration of interaction

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

class yade.wrapper.CylScGeom(inherits ScGeom → GenericSpheresContact → IGeom → Serial-
izable)

Geometry of a cylinder-sphere contact.
end(=Vector3r::Zero())

position of 2nd node (auto-updated)
id3(=0)

id of next chained cylinder (auto-updated)
isDuplicate(=0)

this flag is turned true (1) automaticaly if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

onNode(=false)
contact on node?

relPos(=0)
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

start(=Vector3r::Zero())
position of 1st node (auto-updated)

trueInt(=-1)
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

class yade.wrapper.Dem3DofGeom(inherits GenericSpheresContact → IGeom → Serializable)
Abstract base class for representing contact geometry of 2 elements that has 3 degrees of freedom:
normal (1 component) and shear (Vector3r, but in plane perpendicular to the normal).
displacementN() → float
displacementT() → Vector3

1.2. Interactions 11

Yade Reference Documentation, Release 1st edition

logCompression(=false)
make strain go to -∞ for length going to zero (false by default).

refLength(=uninitalized)
some length used to convert displacements to strains. (auto-computed)

se31(=uninitalized)
Copy of body #1 se3 (needed to compute torque from the contact, strains etc). (auto-updated)

se32(=uninitalized)
Copy of body #2 se3. (auto-updated)

slipToDisplacementTMax((float)arg2) → float
slipToStrainTMax((float)arg2) → float
strainN() → float
strainT() → Vector3

class yade.wrapper.Dem3DofGeom_FacetSphere(inherits Dem3DofGeom → GenericSpheresCon-
tact → IGeom → Serializable)

Class representing facet+sphere in contact which computes 3 degrees of freedom (normal and shear
deformation).
cp1pt(=uninitalized)

Reference contact point on the facet in facet-local coords.
cp2rel(=uninitalized)

Orientation between +x and the reference contact point (on the sphere) in sphere-local coords
effR2(=uninitalized)

Effective radius of sphere
localFacetNormal(=uninitalized)

Unit normal of the facet plane in facet-local coordinates
class yade.wrapper.Dem3DofGeom_SphereSphere(inherits Dem3DofGeom → Generic-

SpheresContact → IGeom → Serializable)
Class representing 2 spheres in contact which computes 3 degrees of freedom (normal and shear
deformation).
cp1rel(=uninitalized)

Sphere’s #1 relative orientation of the contact point with regards to sphere-local +x axis
(quasi-constant)

cp2rel(=uninitalized)
Same as cp1rel, but for sphere #2.

effR1(=uninitalized)
Effective radius of sphere #1; can be smaller/larger than refR1 (the actual radius), but quasi-
constant throughout interaction life

effR2(=uninitalized)
Same as effR1, but for sphere #2.

class yade.wrapper.Dem3DofGeom_WallSphere(inherits Dem3DofGeom → GenericSpheresCon-
tact → IGeom → Serializable)

Representation of contact between wall and sphere, based on Dem3DofGeom.
cp1pt(=uninitalized)

initial contact point on the wall, relative to the current contact point
cp2rel(=uninitalized)

orientation between +x and the reference contact point (on the sphere) in sphere-local coords
effR2(=uninitalized)

effective radius of sphere

12 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

class yade.wrapper.GenericSpheresContact(inherits IGeom → Serializable)
Class uniting ScGeom and Dem3DofGeom, for the purposes of GlobalStiffnessTimeStepper. (It
might be removed inthe future). Do not use this class directly.
contactPoint(=uninitalized)

some reference point for the interaction (usually in the middle). (auto-computed)
normal(=uninitalized)

Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

refR1(=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

class yade.wrapper.L3Geom(inherits GenericSpheresContact → IGeom → Serializable)
Geometry of contact given in local coordinates with 3 degress of freedom: normal and two in shear
plane. [experimental]
F(=Vector3r::Zero())

Applied force in local coordinates [debugging only, will be removed]
trsf(=Matrix3r::Identity())

Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact.contactPoint)

u(=Vector3r::Zero())
Displacement components, in local coordinates. (auto-updated)

u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate IGeomFunctor, resulting in u. This value can be changed for
instance

1.by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2.by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3.by LawFunctor to account for plastic slip.
Note: Never set an absolute value of u0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in IPhys isntead
(this might be changed: have u0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

class yade.wrapper.L6Geom(inherits L3Geom → GenericSpheresContact → IGeom → Serializ-
able)

Geometric of contact in local coordinates with 6 degrees of freedom. [experimental]
phi(=Vector3r::Zero())

Rotation components, in local coordinates. (auto-updated)
phi0(=Vector3r::Zero())

Zero rotation, should be always subtracted from phi to get the value. See L3Geom.u0.
class yade.wrapper.ScGeom(inherits GenericSpheresContact → IGeom → Serializable)

Class representing geometry of a contact point between two bodies with a non-spherical bodies
(Facet, Plane, Box, ChainedCylinder), or between non-spherical bodies. The contact has 3 DOFs
(normal and 2×shear) and uses incremental algorithm for updating shear.
We use symbols x, v, ω respectively for position, linear and angular velocities (all in global
coordinates) and r for particles radii; subscripted with 1 or 2 to distinguish 2 spheres in contact.

1.2. Interactions 13

Yade Reference Documentation, Release 1st edition

Then we compute unit contact normal

n =
x2 − x1

||x2 − x1||

Relative velocity of spheres is then

v12 = (v2 +ω2 × (−r2n)) − (v1 +ω1 × (r1n))

and its shear component

∆vs12 = v12 − (n · v12)n.

Tangential displacement increment over last step then reads

xs12 = ∆tvs12.

incidentVel((Interaction)i[, (bool)avoidGranularRatcheting=True]) → Vector3
Return incident velocity of the interaction.

penetrationDepth(=NaN)
Penetration distance of spheres (positive if overlapping)

relAngVel((Interaction)i) → Vector3
Return relative angular velocity of the interaction.

shearInc(=Vector3r::Zero())
Shear displacement increment in the last step

class yade.wrapper.ScGeom6D(inherits ScGeom → GenericSpheresContact → IGeom → Serial-
izable)

Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2×shear,
twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.
bending(=Vector3r::Zero())

Bending at contact as a vector defining axis of rotation and angle (angle=norm).
initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))

Orientation of body 1 one at initialisation time (auto-updated)
initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))

Orientation of body 2 one at initialisation time (auto-updated)
twist(=0)

Elastic twist angle of the contact.
twistCreep(=Quaternionr(1.0, 0.0, 0.0, 0.0))

Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

class yade.wrapper.TTetraGeom(inherits IGeom → Serializable)
Geometry of interaction between 2 tetrahedra, including volumetric characteristics
contactPoint(=uninitalized)

Contact point (global coords)
equivalentCrossSection(=NaN)

Cross-section of the overlap (perpendicular to the axis of least inertia
equivalentPenetrationDepth(=NaN)

??
maxPenetrationDepthA(=NaN)

??
maxPenetrationDepthB(=NaN)

??

14 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

normal(=uninitalized)
Normal of the interaction, directed in the sense of least inertia of the overlap volume

penetrationVolume(=NaN)
Volume of overlap [m³]

1.2.3 IPhys

IPhys

FrictPhys

NormShearPhys

NormPhys

CohFrictPhys

RpmPhys

CapillaryPhys

CSPhys

ViscElPhys

CpmPhys

MomentPhys

NormalInelasticityPhys

ViscoFrictPhys

CFpmPhys

MindlinPhys

WirePhys

class yade.wrapper.IPhys(inherits Serializable)
Physical (material) properties of interaction.

dispHierarchy([(bool)names=True]) → list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

class yade.wrapper.CFpmPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
Representation of a single interaction of the CFpm type, storage for relevant parameters
FnMax(=0)

Defines the maximum admissible normal force in traction Fn-
Max=tensileStrength*crossSection, with crossSection=pi*Rmin^2. [Pa]

FsMax(=0)
Defines the maximum admissible tangential force in shear FsMax=cohesion*FnMax, with
crossSection=pi*Rmin^2. [Pa]

cumulativeRotation(=0)
Cumulated rotation... [-]

frictionAngle(=0)
defines Coulomb friction. [deg]

initD(=0)
equilibrium distance for particles. Computed as the initial interparticular distance when
bonded particle interact. initD=0 for non cohesive interactions.

1.2. Interactions 15

Yade Reference Documentation, Release 1st edition

initialOrientation1(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Used for moment computation.

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Used for moment computation.

isCohesive(=false)
If false, particles interact in a frictional way. If true, particles are bonded regarding the given
cohesion and tensileStrength.

kr(=0)
Defines the stiffness to compute the resistive moment in rotation. [-]

maxBend(=0)
Defines the maximum admissible resistive moment in rotation Mtmax=maxBend*Fn,
maxBend=eta*meanRadius. [m]

moment_bending(=Vector3r::Zero())
[N.m]

moment_twist(=Vector3r::Zero())
[N.m]

prevNormal(=Vector3r::Zero())
Normal to the contact at previous time step.

strengthSoftening(=0)
Defines the softening when Dtensile is reached to avoid explosion. Typically, when D >
Dtensile, Fn=FnMax - (kn/strengthSoftening)*(Dtensile-D). [-]

tanFrictionAngle(=0)
Tangent of frictionAngle. [-]

class yade.wrapper.CSPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
Physical properties for Cundall&Strack constitutive law, created by Ip2_2xFrictMat_CSPhys.
frictionAngle(=NaN)

Friction angle of the interaction. (auto-computed)
tanFrictionAngle(=NaN)

Precomputed tangent of CSPhys::frictionAngle. (auto-computed)
class yade.wrapper.CapillaryPhys(inherits FrictPhys → NormShearPhys → NormPhys →

IPhys → Serializable)
Physics (of interaction) for Law2_ScGeom_CapillaryPhys_Capillarity.
CapillaryPressure(=0.)

Value of the capillary pressure Uc defines as Ugas-Uliquid
Delta1(=0.)

Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)
Delta2(=0.)

Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)
Fcap(=Vector3r::Zero())

Capillary Force produces by the presence of the meniscus
Vmeniscus(=0.)

Volume of the menicus
fusionNumber(=0.)

Indicates the number of meniscii that overlap with this one
meniscus(=false)

Presence of a meniscus if true
class yade.wrapper.CohFrictPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys→ Serializable)

16 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

cohesionBroken(=true)
is cohesion active? will be set false when a fragile contact is broken

cohesionDisablesFriction(=false)
is shear strength the sum of friction and adhesion or only adhesion?

creep_viscosity(=-1)
creep viscosity [Pa.s/m].

creepedShear(=Vector3r(0, 0, 0))
Creeped force (parallel)

fragile(=true)
do cohesion disapear when contact strength is exceeded?

kr(=0)
rotational stiffness [N.m/rad]

ktw(=0)
twist stiffness [N.m/rad]

maxRollPl(=0.0)
Coefficient to determine the maximum plastic rolling moment.

maxTwistMoment(=Vector3r::Zero())
Maximum elastic value for the twisting moment (if zero, plasticity will not be applied). In
CohFrictMat a parameter should be added to decide what value should be attributed to this
threshold value.

momentRotationLaw(=false)
use bending/twisting moment at contacts. See CohFrictPhys::cohesionDisablesFriction for
details.

moment_bending(=Vector3r(0, 0, 0))
Bending moment

moment_twist(=Vector3r(0, 0, 0))
Twist moment

normalAdhesion(=0)
tensile strength

shearAdhesion(=0)
cohesive part of the shear strength (a frictional term might be added depending on Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment::always_use_moment_law)

unp(=0)
plastic normal displacement, only used for tensile behaviour and if CohFrict-
Phys::fragile‘=false. :ydefault:‘0

unpMax(=0)
maximum value of plastic normal displacement, after that the interaction breaks even if Co-
hFrictPhys::fragile‘=false. The default value (0) means no maximum. :ydefault:‘0

class yade.wrapper.CpmPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
Representation of a single interaction of the Cpm type: storage for relevant parameters.
Evolution of the contact is governed by Law2_Dem3DofGeom_CpmPhys_Cpm, that includes
damage effects and chages of parameters inside CpmPhys. See cpm-model for details.
E(=NaN)

normal modulus (stiffness / crossSection) [Pa]
Fn

Magnitude of normal force.
Fs

Magnitude of shear force

1.2. Interactions 17

Yade Reference Documentation, Release 1st edition

G(=NaN)
shear modulus [Pa]

crossSection(=NaN)
equivalent cross-section associated with this contact [m²]

dmgOverstress(=0)
damage viscous overstress (at previous step or at current step)

dmgRateExp(=0)
exponent in the rate-dependent damage evolution

dmgStrain(=0)
damage strain (at previous or current step)

dmgTau(=-1)
characteristic time for damage (if non-positive, the law without rate-dependence is used)

epsCrackOnset(=NaN)
strain at which the material starts to behave non-linearly

epsFracture(=NaN)
strain where the damage-evolution law tangent from the top (epsCrackOnset) touches the axis;
since the softening law is exponential, this doesn’t mean that the contact is fully damaged at
this point, that happens only asymptotically

epsN
Current normal strain

epsNPl(=0)
normal plastic strain (initially zero)

epsPlSum(=0)
cummulative shear plastic strain measure (scalar) on this contact

epsT(=Vector3r::Zero())
Total shear strain (either computed from increments with ScGeom or simple copied with
Dem3DofGeom) (auto-updated)

epsTrans(=0)
Transversal strain (perpendicular to the contact axis)

isCohesive(=false)
if not cohesive, interaction is deleted when distance is greater than zero.

isoPrestress(=0)
“prestress” of this link (used to simulate isotropic stress)

kappaD(=0)
Up to now maximum normal strain (semi-norm), non-decreasing in time.

neverDamage(=false)
the damage evolution function will always return virgin state

omega
Damage internal variable

plRateExp(=0)
exponent in the rate-dependent viscoplasticity

plTau(=-1)
characteristic time for viscoplasticity (if non-positive, no rate-dependence for shear)

relResidualStrength
Relative residual strength

sigmaN
Current normal stress

sigmaT
Current shear stress

18 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

tanFrictionAngle(=NaN)
tangens of internal friction angle [-]

undamagedCohesion(=NaN)
virgin material cohesion [Pa]

class yade.wrapper.FrictPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
The simple linear elastip-plastic interaction with friction angle, like in the traditional [Cundall-
Strack1979]
tangensOfFrictionAngle(=NaN)

tan of angle of friction
class yade.wrapper.MindlinPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys→ Serializable)

Representation of an interaction of the Hertz-Mindlin type.
Fs(=Vector2r::Zero())

Shear force in local axes (computed incrementally)
adhesionForce(=0.0)

Force of adhesion as predicted by DMT
alpha(=0.0)

Constant coefficient to define contact viscous damping for non-linear elastic force-displacement
relationship.

betan(=0.0)
Fraction of the viscous damping coefficient (normal direction) equal to cn

Cn,crit
.

betas(=0.0)
Fraction of the viscous damping coefficient (shear direction) equal to cs

Cs,crit
.

isAdhesive(=false)
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

isSliding(=false)
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

kno(=0.0)
Constant value in the formulation of the normal stiffness

kr(=0.0)
Rotational stiffness

kso(=0.0)
Constant value in the formulation of the tangential stiffness

ktw(=0.0)
Rotational stiffness

maxBendPl(=0.0)
Coefficient to determine the maximum plastic moment to apply at the contact

momentBend(=Vector3r::Zero())
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

momentTwist(=Vector3r::Zero())
Artificial twisting moment (no plastic condition can be applied at the moment)

normalViscous(=Vector3r::Zero())
Normal viscous component

prevU(=Vector3r::Zero())
Previous local displacement; only used with Law2_L3Geom_FrictPhys_HertzMindlin.

radius(=NaN)
Contact radius (only computed with Law2_ScGeom_MindlinPhys_Mindlin::calcEnergy)

1.2. Interactions 19

Yade Reference Documentation, Release 1st edition

shearElastic(=Vector3r::Zero())
Total elastic shear force

shearViscous(=Vector3r::Zero())
Shear viscous component

usElastic(=Vector3r::Zero())
Total elastic shear displacement (only elastic part)

usTotal(=Vector3r::Zero())
Total elastic shear displacement (elastic+plastic part)

class yade.wrapper.MomentPhys(inherits NormShearPhys→ NormPhys→ IPhys→ Serializable)
Physical interaction properties for use with Law2_SCG_MomentPhys_CohesionlessMomentRo-
tation, created by Ip2_MomentMat_MomentMat_MomentPhys.
Eta(=0)

??
cumulativeRotation(=0)

??
frictionAngle(=0)

Friction angle [rad]
initialOrientation1(=Quaternionr::Identity())

??
initialOrientation2(=Quaternionr::Identity())

??
kr(=0)

rolling stiffness
moment_bending(=Vector3r::Zero())

??
moment_twist(=Vector3r::Zero())

??
prevNormal(=Vector3r::Zero())

Normal in the previous step.
shear(=Vector3r::Zero())

??
tanFrictionAngle(=0)

Tangent of friction angle
class yade.wrapper.NormPhys(inherits IPhys → Serializable)

Abstract class for interactions that have normal stiffness.
kn(=NaN)

Normal stiffness
normalForce(=Vector3r::Zero())

Normal force after previous step (in global coordinates).
class yade.wrapper.NormShearPhys(inherits NormPhys → IPhys → Serializable)

Abstract class for interactions that have shear stiffnesses, in addition to normal stiffness. This class
is used in the PFC3d-style stiffness timestepper.
ks(=NaN)

Shear stiffness
shearForce(=Vector3r::Zero())

Shear force after previous step (in global coordinates).

20 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

class yade.wrapper.NormalInelasticityPhys(inherits FrictPhys → NormShearPhys → Norm-
Phys → IPhys → Serializable)

Physics (of interaction) for using Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity :
with inelastic unloadings
forMaxMoment(=1.0)

parameter stored for each interaction, and allowing to compute the maximum value of the
exchanged torque : TorqueMax= forMaxMoment * NormalForce

knLower(=0.0)
the stifness corresponding to a virgin load for example

kr(=0.0)
the rolling stiffness of the interaction

moment_bending(=Vector3r(0, 0, 0))
Bending moment. Defined here, being initialized as it should be, to be used in Law2_-
ScGeom6D_NormalInelasticityPhys_NormalInelasticity

moment_twist(=Vector3r(0, 0, 0))
Twist moment. Defined here, being initialized as it should be, to be used in Law2_Sc-
Geom6D_NormalInelasticityPhys_NormalInelasticity

previousFn(=0.0)
the value of the normal force at the last time step

previousun(=0.0)
the value of this un at the last time step

unMax(=0.0)
the maximum value of penetration depth of the history of this interaction

class yade.wrapper.RpmPhys(inherits NormShearPhys → NormPhys → IPhys → Serializable)
Representation of a single interaction of the Cpm type: storage for relevant parameters.
Evolution of the contact is governed by Law2_Dem3DofGeom_CpmPhys_Cpm, that includes
damage effects and chages of parameters inside CpmPhys
E(=NaN)

normal modulus (stiffness / crossSection) [Pa]
G(=NaN)

shear modulus [Pa]
crossSection(=0)

equivalent cross-section associated with this contact [m²]
isCohesive(=false)

if not cohesive, interaction is deleted when distance is greater than lengthMaxTension or less
than lengthMaxCompression.

lengthMaxCompression(=0)
Maximal penetration of particles during compression. If it is more, the interaction is deleted
[m]

lengthMaxTension(=0)
Maximal distance between particles during tension. If it is more, the interaction is deleted
[m]

tanFrictionAngle(=NaN)
tangens of internal friction angle [-]

class yade.wrapper.ViscElPhys(inherits FrictPhys → NormShearPhys → NormPhys → IPhys→ Serializable)
IPhys created from ViscElMat, for use with Law2_ScGeom_ViscElPhys_Basic.
cn(=NaN)

Normal viscous constant

1.2. Interactions 21

Yade Reference Documentation, Release 1st edition

cs(=NaN)
Shear viscous constant

class yade.wrapper.ViscoFrictPhys(inherits FrictPhys → NormShearPhys → NormPhys →
IPhys → Serializable)

Temporary version of FrictPhys for compatibility with e.g. Law2_ScGeom6D_NormalInelastici-
tyPhys_NormalInelasticity
creepedShear(=Vector3r(0, 0, 0))

Creeped force (parallel)
class yade.wrapper.WirePhys(inherits NormPhys → IPhys → Serializable)

Representation of a single interaction of the WirePM type, storage for relevant parameters
displForceValues(=uninitalized)

Defines the values for force-displacement curve.
initD(=0)

Equilibrium distance for particles. Computed as the initial inter-particular distance when
particle are linked.

isDoubleTwist(=false)
If true the properties of the interaction will be defined as a double-twisted wire.

isLinked(=false)
If true particles are linked and will interact. Interactions are linked automatically by the
definition of the corresponding interaction radius. The value is false if the wire breaks (no
more interaction).

plastD
Plastic part of the inter-particular distance of the previous step.
Note: Only elastic displacements are reversible (the elastic stiffness is used for unloading)
and compressive forces are inadmissible. The compressive stiffness is assumed to be equal to
zero (see [Bertrand2005]).

stiffnessValues(=uninitalized)
Defines the values for the different stiffness (first value corresponds to elastic stiffness kn).

22 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

1.3 Global engines

1.3.1 GlobalEngine

GlobalEngine

Collider

PeriodicEngine

BoundaryController

CapillaryStressRecorder

Recorder

ParticleSizeDis trbutionRPMRecorder

ForceRecorder

DomainLimiter

GlobalStiffnessTimeStepper

TimeStepper

FacetTopologyAnalyzer

CpmStateUpdater

ResetRandomPos ition

FieldApplier

Cohes iveFrictionalContactLaw

NewtonIntegrator

TriaxialStateRecorder

Law2_ScGeom_CapillaryPhys_Capillarity

TesselationWrapper

ForceResetter

Cohes iveStateRPMRecorder

TetraVolumetricLaw

PyRunner

MicroMacroAnalyser

CircularFactory

SpheresFactory

VTKRecorder

QuadroFactory

ElasticContactLaw

DragForceApplier

InteractionLoop

class yade.wrapper.GlobalEngine(inherits Engine → Serializable)
Engine that will generally affect the whole simulation (contrary to PartialEngine).

class yade.wrapper.CapillaryStressRecorder(inherits Recorder → PeriodicEngine → Glob-
alEngine → Engine → Serializable)

Records information from capillary meniscii on samples submitted to triaxial compressions. ->
New formalism needs to be tested!!!

class yade.wrapper.CircularFactory(inherits SpheresFactory → GlobalEngine → Engine →
Serializable)

Circular geometry of the SpheresFactory region. It can be disk (given by radius and center), or
cylinder (given by radius, length and center).

1.3. Global engines 23

Yade Reference Documentation, Release 1st edition

center(=Vector3r(NaN, NaN, NaN))
Center of the region

length(=0)
Length of the cylindrical region (0 by default)

radius(=NaN)
Radius of the region

class yade.wrapper.CohesiveFrictionalContactLaw(inherits GlobalEngine → Engine → Seri-
alizable)

[DEPRECATED] Loop over interactions applying Law2_ScGeom6D_CohFrictPhys_CohesionMo-
ment on all interactions.
Note: Use InteractionLoop and Law2_ScGeom6D_CohFrictPhys_CohesionMoment instead of
this class for performance reasons.
always_use_moment_law(=false)

If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

creepStiffness(=10)
...

creep_viscosity(=false)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys...

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

shear_creep2(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

class yade.wrapper.CohesiveStateRPMRecorder(inherits Recorder → PeriodicEngine → Glob-
alEngine → Engine → Serializable)

Store number of cohesive contacts in RPM model to file.
numberCohesiveContacts(=0)

Number of cohesive contacts found at last run. [-]
class yade.wrapper.CpmStateUpdater(inherits PeriodicEngine → GlobalEngine → Engine →

Serializable)
Update CpmState of bodies based on state variables in CpmPhys of interactions with this bod. In
particular, bodies’ colors and CpmState::normDmg depending on average damage of their interac-
tions and number of interactions that were already fully broken and have disappeared is updated.
This engine contains its own loop (2 loops, more precisely) over all bodies and should be run
periodically to update colors during the simulation, if desired.
avgRelResidual(=NaN)

Average residual strength at last run.
maxOmega(=NaN)

Globally maximum damage parameter at last run.
class yade.wrapper.DomainLimiter(inherits PeriodicEngine → GlobalEngine → Engine → Se-

rializable)
Delete particles that are out of axis-aligned box given by lo and hi.
hi(=Vector3r(0, 0, 0))

Upper corner of the domain.

24 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

lo(=Vector3r(0, 0, 0))
Lower corner of the domain.

nDeleted(=0)
Cummulative number of particles deleted.

class yade.wrapper.DragForceApplier(inherits GlobalEngine → Engine → Serializable)
Apply drag force on particles, decelerating them proportionally to their linear velocities. The
applied force reads

Fd = −
v

|v|

1

2
ρ|v|2CdA

where ρ is the medium density (density), v is particle’s velocity, A is particle projected area (disc),
Cd is the drag coefficient (0.47 for Sphere),
Note: Drag force is only applied to spherical particles.

Warning: Not tested.

density(=0)
Density of the medium.

class yade.wrapper.ElasticContactLaw(inherits GlobalEngine → Engine → Serializable)
[DEPRECATED] Loop over interactions applying Law2_ScGeom_FrictPhys_CundallStrack on
all interactions.
Note: Use InteractionLoop and Law2_ScGeom_FrictPhys_CundallStrack instead of this class
for performance reasons.
neverErase(=false)

Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

class yade.wrapper.FacetTopologyAnalyzer(inherits GlobalEngine → Engine → Serializable)
Initializer for filling adjacency geometry data for facets.
Common vertices and common edges are identified and mutual angle between facet faces is written
to Facet instances. If facets don’t move with respect to each other, this must be done only at the
beginng.
commonEdgesFound(=0)

how many common edges were identified during last run. (auto-updated)
commonVerticesFound(=0)

how many common vertices were identified during last run. (auto-updated)
projectionAxis(=Vector3r::UnitX())

Axis along which to do the initial vertex sort
relTolerance(=1e-4)

maximum distance of ‘identical’ vertices, relative to minimum facet size
class yade.wrapper.ForceRecorder(inherits Recorder → PeriodicEngine → GlobalEngine → En-

gine → Serializable)
Engine saves the resulting force affecting to Subscribed bodies. For instance, can be useful for
defining the forces, which affect to _buldozer_ during its work.
ids(=uninitalized)

Lists of bodies whose state will be measured
class yade.wrapper.ForceResetter(inherits GlobalEngine → Engine → Serializable)

Reset all forces stored in Scene::forces (O.forces in python). Typically, this is the first engine to
be run at every step. In addition, reset those energies that should be reset, if energy tracing is
enabled.

1.3. Global engines 25

http://en.wikipedia.org/wiki/Drag_equation

Yade Reference Documentation, Release 1st edition

class yade.wrapper.GlobalStiffnessTimeStepper(inherits TimeStepper → GlobalEngine →
Engine → Serializable)

An engine assigning the time-step as a fraction of the minimum eigen-period in the problem
defaultDt(=1)

used as default AND as max value of the timestep
previousDt(=1)

last computed dt (auto-updated)
timestepSafetyCoefficient(=0.8)

safety factor between the minimum eigen-period and the final assigned dt (less than 1))
class yade.wrapper.InteractionLoop(inherits GlobalEngine → Engine → Serializable)

Unified dispatcher for handling interaction loop at every step, for parallel performance reasons.
Special constructor
Constructs from 3 lists of Ig2, Ip2, Law functors respectively; they will be passed to interal dis-
patchers, which you might retrieve.
callbacks(=uninitalized)

Callbacks which will be called for every Interaction, if activated.
geomDispatcher(=new IGeomDispatcher)

IGeomDispatcher object that is used for dispatch.
lawDispatcher(=new LawDispatcher)

LawDispatcher object used for dispatch.
physDispatcher(=new IPhysDispatcher)

IPhysDispatcher object used for dispatch.
class yade.wrapper.Law2_ScGeom_CapillaryPhys_Capillarity(inherits GlobalEngine → En-

gine → Serializable)
This law allows to take into account capillary forces/effects between spheres coming from the
presence of interparticular liquid bridges (menisci).

refs:

1.in french [Scholtes2009d] (lot of documentation)
2.in english [Scholtes2009b] (less documentation), pg. 64-75.

The law needs ascii files M(r=i) with i=R1/R2 to work (see https://yade-
dem.org/index.php/CapillaryTriaxialTest). These ASCII files contain a set of results from
the resolution of the Laplace-Young equation for different configurations of the interacting
geometry.
The control parameter is the capillary pressure (or suction) Uc = ugas - Uliquid. Liquid bridges
properties (volume V, extent over interacting grains delta1 and delta2) are computed as a result
of the defined capillary pressure and of the interacting geometry (spheres radii and interparticular
distance).
CapillaryPressure(=0.)

Value of the capillary pressure Uc defines as Uc=Ugas-Uliquid
binaryFusion(=true)

If true, capillary forces are set to zero as soon as, at least, 1 overlap (menisci fusion) is detected
fusionDetection(=false)

If true potential menisci overlaps are checked
class yade.wrapper.MicroMacroAnalyser(inherits GlobalEngine → Engine → Serializable)

Compute fabric tensor, local porosity, local deformation, and other micromechanicaly defined quan-
tities based on triangulation/tesselation of the packing.
compDeformation(=false)

Is the engine just saving states or also computing and outputing deformations for each incre-
ment?

26 Chapter 1. Class reference (yade.wrapper module)

https://yade-dem.org/index.php/CapillaryTriaxialTest
https://yade-dem.org/index.php/CapillaryTriaxialTest

Yade Reference Documentation, Release 1st edition

compIncrt(=false)
Should increments of force and displacements be defined on [n,n+1]? If not, states will be
saved with only positions and forces (no displacements).

incrtNumber(=1)
interval(=100)

Number of timesteps between analyzed states.
outputFile(=”MicroMacroAnalysis”)

Base name for increment analysis output file.
stateFileName(=”state”)

Base name of state files.
stateNumber(=0)

A number incremented and appended at the end of output files to reflect increment number.
class yade.wrapper.NewtonIntegrator(inherits GlobalEngine → Engine → Serializable)

Engine integrating newtonian motion equations.
damping(=0.2)

damping coefficient for Cundall’s non viscous damping (see [Chareyre2005]) [-]
exactAsphericalRot(=true)

Enable more exact body rotation integrator for aspherical bodies only, using formulation from
[Allen1989], pg. 89.

kinSplit(=false)
Whether to separately track translational and rotational kinetic energy.

maxVelocitySq(=NaN)
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

prevVelGrad(=Matrix3r::Zero())
Store previous velocity gradient (Cell::velGrad) to track acceleration. (auto-updated)

warnNoForceReset(=true)
Warn when forces were not resetted in this step by ForceResetter; this mostly points to
ForceResetter being forgotten incidentally and should be disabled only with a good reason.

class yade.wrapper.ParticleSizeDistrbutionRPMRecorder(inherits Recorder → Periodi-
cEngine → GlobalEngine → En-
gine → Serializable)

Store number of PSD in RPM model to file.
numberCohesiveContacts(=0)

Number of cohesive contacts found at last run. [-]
class yade.wrapper.PeriodicEngine(inherits GlobalEngine → Engine → Serializable)

Run Engine::action with given fixed periodicity real time (=wall clock time, computation time),
virtual time (simulation time), iteration number), by setting any of those criteria (virtPeriod,
realPeriod, iterPeriod) to a positive value. They are all negative (inactive) by default.
The number of times this engine is activated can be limited by setting nDo>0. If the number of
activations will have been already reached, no action will be called even if an active period has
elapsed.
If initRun is set (false by default), the engine will run when called for the first time; otherwise it
will only start counting period (realLast etc interal variables) from that point, but without actually
running, and will run only once a period has elapsed since the initial run.
This class should be used directly; rather, derive your own engine which you want to be run
periodically.
Derived engines should override Engine::action(), which will be called periodically. If the derived
Engine overrides also Engine::isActivated, it should also take in account return value from Periodi-
cEngine::isActivated, since otherwise the periodicity will not be functional.

1.3. Global engines 27

Yade Reference Documentation, Release 1st edition

Example with PyRunner, which derives from PeriodicEngine; likely to be encountered in python
scripts):

PyRunner(realPeriod=5,iterPeriod=10000,command='print O.iter')

will print iteration number every 10000 iterations or every 5 seconds of wall clock time, whiever
comes first since it was last run.
initRun(=false)

Run the first time we are called as well.
iterLast(=0)

Tracks step number of last run (auto-updated).
iterPeriod(=0, deactivated)

Periodicity criterion using step number (deactivated if <= 0)
nDo(=-1, deactivated)

Limit number of executions by this number (deactivated if negative)
nDone(=0)

Track number of executions (cummulative) (auto-updated).
realLast(=0)

Tracks real time of last run (auto-updated).
realPeriod(=0, deactivated)

Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)
virtLast(=0)

Tracks virtual time of last run (auto-updated).
virtPeriod(=0, deactivated)

Periodicity criterion using virtual (simulation) time (deactivated if <= 0)
class yade.wrapper.PyRunner(inherits PeriodicEngine → GlobalEngine → Engine → Serializ-

able)
Execute a python command periodically, with defined (and adjustable) periodicity. See Periodi-
cEngine documentation for details.
command(=”“)

Command to be run by python interpreter. Not run if empty.
class yade.wrapper.QuadroFactory(inherits SpheresFactory → GlobalEngine → Engine → Se-

rializable)
Quadro geometry of the SpheresFactory region, given by extents and center
center(=Vector3r(NaN, NaN, NaN))

Center of the region
extents(=Vector3r(NaN, NaN, NaN))

Extents of the region
class yade.wrapper.Recorder(inherits PeriodicEngine → GlobalEngine → Engine → Serializ-

able)
Engine periodically storing some data to (one) external file. In addition PeriodicEngine, it handles
opening the file as needed. See PeriodicEngine for controlling periodicity.
addIterNum(=false)

Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

file(=uninitalized)
Name of file to save to; must not be empty.

truncate(=false)
Whether to delete current file contents, if any, when opening (false by default)

28 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

class yade.wrapper.ResetRandomPosition(inherits GlobalEngine → Engine → Serializable)
Creates spheres during simulation, placing them at random positions. Every time called, one new
sphere will be created and inserted in the simulation.
angularVelocity(=Vector3r::Zero())

Mean angularVelocity of spheres.
angularVelocityRange(=Vector3r::Zero())

Half size of a angularVelocity distribution interval. New sphere will have random angularVe-
locity within the range angularVelocity±angularVelocityRange.

factoryFacets(=uninitalized)
The geometry of the section where spheres will be placed; they will be placed on facets or in
volume between them depending on volumeSection flag.

maxAttempts(=20)
Max attempts to place sphere. If placing the sphere in certain random position would cause
an overlap with any other physical body in the model, SpheresFactory will try to find another
position.

normal(=Vector3r(0, 1, 0))
??

point(=Vector3r::Zero())
??

subscribedBodies(=uninitalized)
Affected bodies.

velocity(=Vector3r::Zero())
Mean velocity of spheres.

velocityRange(=Vector3r::Zero())
Half size of a velocities distribution interval. New sphere will have random velocity within the
range velocity±velocityRange.

volumeSection(=false, define factory by facets.)
Create new spheres inside factory volume rather than on its surface.

class yade.wrapper.SpheresFactory(inherits GlobalEngine → Engine → Serializable)
Engine for spitting spheres based on mass flow rate, particle size distribution etc. Initial velocity
of particles is given by vMin, vMax, the massFlowRate determines how many particles to generate
at each step. When goalMass is attained or positive maxParticles is reached, the engine does
not produce particles anymore. Geometry of the region should be defined in a derived engine by
overriden SpheresFactory::pickRandomPosition().
A sample script for this engine is in scripts/spheresFactory.py.
goalMass(=0)

Total mass that should be attained at the end of the current step. (auto-updated)
massFlowRate(=NaN)

Mass flow rate [kg/s]
materialId(=-1)

Shared material id to use for newly created spheres (can be negative to count from the end)
maxAttempt(=5000)

Maximum number of attempts to position a new sphere randomly.
maxParticles(=100)

The number of particles at which to stop generating new ones (regardless of massFlowRate
normal(=Vector3r(NaN, NaN, NaN))

Spitting direction (and orientation of the region’s geometry).
numParticles(=0)

Cummulative number of particles produces so far (auto-updated)

1.3. Global engines 29

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/spheresFactory.py

Yade Reference Documentation, Release 1st edition

rMax(=NaN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaN)
Minimum radius of generated spheres (uniform distribution)

silent(=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

totalMass(=0)
Mass of spheres that was produced so far. (auto-updated)

vAngle(=NaN)
Maximum angle by which the initial sphere velocity deviates from the nozzle normal.

vMax(=NaN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NaN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.TesselationWrapper(inherits GlobalEngine → Engine → Serializable)
Handle the triangulation of spheres in a scene, build tesselation on request, and give access to
computed quantities : currently volume and porosity of each Voronoï sphere. Example script :
tt=TriaxialTest()
tt.generate(‘test.xml’)
O.load(‘test.xml’)
O.run(100) //for unknown reasons, this procedure crashes at iteration 0
TW=TesselationWrapper()
TW.triangulate() //compute regular Delaunay triangulation, don’t construct tesselation
TW.computeVolumes() //will silently tesselate the packing
TW.volume(10) //get volume associated to sphere of id 10
Note: This engine needs yade built with ‘cgal’ feature.
computeVolumes() → None

Compute volumes of all Voronoi’s cells.

getVolPoroDef([(bool)deformation=False]) → dict
Return a table with per-sphere computed quantities. Include deformations on the increment
defined by states 0 and 1 if deformation=True (make sure to define states 0 and 1 consistently).

n_spheres(=0)
(auto-computed)

setState([(bool)state=0]) → None
Make the current state the initial (0) or final (1) configuration for the definition of displacement
increments, use only state=0 if you just want to get only volmumes and porosity.

triangulate([(bool)reset=True]) → None
triangulate spheres of the packing

volume([(int)id=0]) → float
Returns the volume of Voronoi’s cell of a sphere.

class yade.wrapper.TetraVolumetricLaw(inherits GlobalEngine → Engine → Serializable)
Calculate physical response of 2 tetrahedra in interaction, based on penetration configuration given
by TTetraGeom.

class yade.wrapper.TimeStepper(inherits GlobalEngine → Engine → Serializable)
Engine defining time-step (fundamental class)

30 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

active(=true)
is the engine active?

timeStepUpdateInterval(=1)
dt update interval

class yade.wrapper.TriaxialStateRecorder(inherits Recorder → PeriodicEngine → Glob-
alEngine → Engine → Serializable)

Engine recording triaxial variables (see the variables list in the first line of the output file). This
recorder needs TriaxialCompressionEngine or ThreeDTriaxialEngine present in the simulation).
porosity(=1)

porosity of the packing [-]
class yade.wrapper.VTKRecorder(inherits PeriodicEngine → GlobalEngine → Engine → Serial-

izable)
Engine recording snapshots of simulation into series of *.vtu files, readable by VTK-based post-
processing programs such as Paraview. Both bodies (spheres and facets) and interactions can be
recorded, with various vector/scalar quantities that are defined on them.
PeriodicEngine.initRun is initialized to True automatically.
ascii(=false)

Store data as readable text in the XML file (sets vtkXMLWriter data mode to
vtkXMLWriter::Ascii, while the default is Appended

compress(=false)
Compress output XML files [experimental].

fileName(=”“)
Base file name; it will be appended with {spheres,intrs,facets}-243100.vtu (unless multiblock
is True) depending on active recorders and step number (243100 in this case). It can contain
slashes, but the directory must exist already.

mask(=0)
If mask defined, only bodies with corresponding groupMask will be exported. If 0, all bodies
will be exported.

recorders
List of active recorders (as strings). all (the default value) enables all base and generic
recorders.
Base recorders
Base recorders save the geometry (unstructured grids) on which other data is defined. They
are implicitly activated by many of the other recorders. Each of them creates a new file (or a
block, if multiblock is set).
spheres Saves positions and radii (radii) of spherical particles.
facets Save facets positions (vertices).
intr Store interactions as lines between nodes at respective particles positions. Additionally

stores magnitude of normal (forceN) and shear (absForceT) forces on interactions (the
geom).

Generic recorders
Generic recorders do not depend on specific model being used and save commonly useful data.
id Saves id’s (field id) of spheres; active only if spheres is active.
clumpId Saves id’s of clumps to which each sphere belongs (field clumpId); active only if

spheres is active.
colors Saves colors of spheres and of facets (field color); only active if spheres or facets

are activated.
mask Saves groupMasks of spheres and of facets (field mask); only active if spheres or facets

are activated.

1.3. Global engines 31

http://www.vtk.org/doc/nightly/html/classvtkXMLWriter.html

Yade Reference Documentation, Release 1st edition

materialId Saves materialID of spheres and of facets; only active if spheres or facets are
activated.

velocity Saves linear and angular velocities of spherical particles as Vector3 and length(fields
linVelVec, linVelLen and angVelVec, angVelLen respectively‘‘); only effective with
spheres.

stress Saves stresses of spheres and of facets as Vector3 and length; only active if spheres
or facets are activated.

Specific recorders
The following should only be activated in appropriate cases, otherwise crashes can
occur due to violation of type presuppositions.
cpm Saves data pertaining to the concrete model: cpmDamage (normalized residual

strength averaged on particle), cpmSigma (stress on particle, normal components),
cpmTau (shear components of stress on particle), cpmSigmaM (mean stress around
particle); intr is activated automatically by cpm

rpm Saves data pertaining to the rock particle model: rpmSpecNum shows different
pieces of separated stones, only ids. rpmSpecMass shows masses of separated
stones.

skipFacetIntr(=true)
Skip interactions with facets, when saving interactions

skipNondynamic(=false)
Skip non-dynamic spheres (but not facets).

1.3.2 BoundaryController

BoundaryController

Disp2DPropLoadEngine

Peri3dController

PeriIsoCompressor

KinemCTDEngine

KinemSimpleShearBox

KinemCNSEngine

TriaxialCompress ionEngineTriaxialStressController

KinemCNLEngine

UniaxialStrainer ThreeDTriaxialEngine

PeriTriaxController

KinemCNDEngine

SampleCapillaryPressureEngine

class yade.wrapper.BoundaryController(inherits GlobalEngine → Engine → Serializable)
Base for engines controlling boundary conditions of simulations. Not to be used directly.

class yade.wrapper.Disp2DPropLoadEngine(inherits BoundaryController → GlobalEngine →
Engine → Serializable)

Disturbs a simple shear sample in a given displacement direction
This engine allows to apply, on a simple shear sample, a loading controlled by du/dgamma = cste,
which is equivalent to du + cste’ * dgamma = 0 (proportionnal path loadings). To do so, the upper
plate of the simple shear box is moved in a given direction (corresponding to a given du/dgamma),

32 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

whereas lateral plates are moved so that the box remains closed. This engine can easily be used
to perform directionnal probes, with a python script launching successivly the same .xml which
contains this engine, after having modified the direction of loading (see theta attribute). That’s
why this Engine contains a saveData procedure which can save data on the state of the sample at
the end of the loading (in case of successive loadings - for successive directions - through a python
script, each line would correspond to one direction of loading).
Key(=”“)

string to add at the names of the saved files, and of the output file filled by saveData
LOG(=false)

boolean controling the output of messages on the screen
id_boxback(=4)

the id of the wall at the back of the sample
id_boxbas(=1)

the id of the lower wall
id_boxfront(=5)

the id of the wall in front of the sample
id_boxleft(=0)

the id of the left wall
id_boxright(=2)

the id of the right wall
id_topbox(=3)

the id of the upper wall
nbre_iter(=0)

the number of iterations of loading to perform
theta(=0.0)

the angle, in a (gamma,h=-u) plane from the gamma - axis to the perturbation vector (trigo
wise) [degrees]

v(=0.0)
the speed at which the perturbation is imposed. In case of samples which are more sensitive
to normal loadings than tangential ones, one possibility is to take v = V_shear - | (V_shear-
V_comp)*sin(theta) | => v=V_shear in shear; V_comp in compression [m/s]

class yade.wrapper.KinemCNDEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To apply a Constant Normal Displacement (CND) shear for a parallelogram box
This engine, designed for simulations implying a simple shear box (SimpleShear Preprocessor or
scripts/simpleShear.py), allows to perform a constant normal displacement shear, by translating
horizontally the upper plate, while the lateral ones rotate so that they always keep contact with
the lower and upper walls.
gamma(=0.0)

the current value of the tangential displacement
gamma_save(=uninitalized)

vector with the values of gamma at which a save of the simulation is performed [m]
gammalim(=0.0)

the value of the tangential displacement at wich the displacement is stopped [m]
shearSpeed(=0.0)

the speed at which the shear is performed : speed of the upper plate [m/s]
class yade.wrapper.KinemCNLEngine(inherits KinemSimpleShearBox → BoundaryController →

GlobalEngine → Engine → Serializable)
To apply a constant normal stress shear (i.e. Constant Normal Load : CNL) for a parallelogram
box (simple shear box : SimpleShear Preprocessor or scripts/simpleShear.py)

1.3. Global engines 33

Yade Reference Documentation, Release 1st edition

This engine allows to translate horizontally the upper plate while the lateral ones rotate so that
they always keep contact with the lower and upper walls.
In fact the upper plate can move not only horizontally but also vertically, so that the normal stress
acting on it remains constant (this constant value is not chosen by the user but is the one that
exists at the beginning of the simulation)
The right vertical displacements which will be allowed are computed from the rigidity Kn of the
sample over the wall (so to cancel a deltaSigma, a normal dplt deltaSigma*S/(Kn) is set)
The movement is moreover controlled by the user via a shearSpeed which will be the speed of the
upper wall, and by a maximum value of horizontal displacement gammalim, after which the shear
stops.
Note: Not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: Because of this last point, if you want to use later saves of simulations executed
with this Engine, but without that stopMovement was executed, your boxes will keep their
speeds => you will have to cancel them ‘by hand’ in the .xml.

gamma(=0.0)
current value of tangential displacement [m]

gamma_save(=uninitalized)
vector with the values of gamma at which a save of the simulation is performed [m]

gammalim(=0.0)
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

shearSpeed(=0.0)
the speed at wich the shearing is performed : speed of the upper plate [m/s]

class yade.wrapper.KinemCNSEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To apply a Constant Normal Stifness (CNS) shear for a parallelogram box (simple shear)
This engine, useable in simulations implying one deformable parallelepipedic box, allows to trans-
late horizontally the upper plate while the lateral ones rotate so that they always keep contact with
the lower and upper walls. The upper plate can move not only horizontally but also vertically, so
that the normal rigidity defined by DeltaF(upper plate)/DeltaU(upper plate) = constant (= KnC
defined by the user).
The movement is moreover controlled by the user via a shearSpeed which is the horizontal speed
of the upper wall, and by a maximum value of horizontal displacement gammalim (of the upper
plate), after which the shear stops.
Note: not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: But, because of this last point, if you want to use later saves of simulations
executed with this Engine, but without that stopMovement was executed, your boxes will keep
their speeds => you will have to cancel them by hand in the .xml

KnC(=10.0e6)
the normal rigidity chosen by the user [MPa/mm] - the conversion in Pa/m will be made

gamma(=0.0)
current value of tangential displacement [m]

gammalim(=0.0)
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

34 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

shearSpeed(=0.0)
the speed at wich the shearing is performed : speed of the upper plate [m/s]

class yade.wrapper.KinemCTDEngine(inherits KinemSimpleShearBox → BoundaryController →
GlobalEngine → Engine → Serializable)

To compress a simple shear sample by moving the upper box in a vertical way only, so that the
tangential displacement (defined by the horizontal gap between the upper and lower boxes) remains
constant (thus, the CTD = Constant Tangential Displacement). The lateral boxes move also to
keep always contact. All that until this box is submitted to a given stress (=*targetSigma*).
Moreover saves are executed at each value of stresses stored in the vector sigma_save, and at
targetSigma
compSpeed(=0.0)

(vertical) speed of the upper box : >0 for real compression, <0 for unloading [m/s]
sigma_save(=uninitalized)

vector with the values of sigma at which a save of the simulation should be performed [kPa]
targetSigma(=0.0)

the value of sigma at which the compression should stop [kPa]
class yade.wrapper.KinemSimpleShearBox(inherits BoundaryController → GlobalEngine → En-

gine → Serializable)
This class is supposed to be a mother class for all Engines performing loadings on the simple shear
box of SimpleShear. It is not intended to be used by itself, but its declaration and implentation
will thus contain all what is useful for all these Engines. The script simpleShear.py illustrates the
use of the various corresponding Engines.
Key(=”“)

string to add at the names of the saved files
LOG(=false)

boolean controling the output of messages on the screen
alpha(=Mathr::PI/2.0)

the angle from the lower box to the left box (trigo wise). Measured by this Engine, not to be
changed by the user.

f0(=0.0)
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Not to be changed by the user.]

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Not to be changed by the user.

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront(=5)
the id of the wall in front of the sample

id_boxleft(=0)
the id of the left wall

id_boxright(=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

max_vel(=1.0)
to limit the speed of the vertical displacements done to control σ (CNL or CNS cases) [m/s]

1.3. Global engines 35

Yade Reference Documentation, Release 1st edition

temoin_save(=uninitalized)
vector (same length as ‘gamma_save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Not to be changed by the user.

wallDamping(=0.2)
the vertical displacements done to to control σ (CNL or CNS cases) are in fact damped,
through this wallDamping

y0(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Not
to be changed by the user.

class yade.wrapper.Peri3dController(inherits BoundaryController → GlobalEngine → Engine→ Serializable)
Class for controlling independently all 6 components of “engineering” stress and strain of periodic
:yref:‘‘Cell‘. goal are the goal values, while stressMask determines which components prescribe
stress and which prescribe strain.
If the strain is prescribed, appropeiate strain rate is directly applied. If the stress is prescribed,
the strain predictor is used: from stress values in two previous steps the value of strain rate is
prescribed so as the value of stress in the next step is as close as possible to the ideal one. Current
algorithm is extremly simple and probably will be changed in future, but is roboust enough and
mostly works fine.
Stress error (difference between actual and ideal stress) is evaluated in current and previous steps
(dσi, dσi−1. Linear extrapolation is used to estimate error in the next step

dσi+1 = 2dσi − dσi−1

According to this error, the strain rate is modified by mod parameter

dσi+1

{
> 0 → ε̇i+1 = ε̇i −max(abs(ε̇i)) ·mod
< 0 → ε̇i+1 = ε̇i +max(abs(ε̇i)) ·mod

According to this fact, the prescribed stress will (almost) never have exact prescribed value, but the
difference would be very small (and decreasing for increasing nSteps. This approach works good if
one of the dominant strain rates is prescribed. If all stresses are prescribed or if all goal strains is
prescribed as zero, a good estimation is needed for the first step, therefore the compliance matrix
is estimated (from user defined estimations of macroscopic material parameters youngEstimation
and poissonEstimation) and respective strain rates is computed form prescribed stress rates and
compliance matrix (the estimation of compliance matrix could be computed autamatically avoiding
user inputs of this kind).
The simulation on rotated periodic cell is also supported. Firstly, the polar decomposition is
performed on cell’s transformation matrix trsf T = UP, where U is orthogonal (unitary) matrix
representing rotation and P is a positive semi-definite Hermitian matrix representing strain. A
logarithm of P should be used to obtain realistic values at higher strain values (not implemented
yet). A prescribed strain increment in global coordinates dt · ε̇ is properly rotated to cell’s local
coordinates and added to P

Pi+1 = P+UTdt · ε̇U

The new value of trsf is computed at T i+1 = UPi+1. From current and next trsf the cell’s velocity
gradient velGrad is computed (according to its definition) as

V = (T i+1T
−1 − I)/dt

Current implementation allow user to define independent loading “path” for each prescribed com-
ponent. i.e. define the prescribed value as a function of time (or progress or steps). See Paths.

36 Chapter 1. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Polar_decomposition#Matrix_polar_decomposition

Yade Reference Documentation, Release 1st edition

Examples scripts/test/peri3dController_example1 and scripts/test/peri3dController_triaxial-
Compression explain usage and inputs of Peri3dController, scripts/test/peri3dController_shear
is an example of using shear components and also simulation on rotatd cell.
doneHook(=uninitalized)

Python command (as string) to run when nSteps is achieved. If empty, the engine will be set
dead.

goal(=Vector6r::Zero())
Goal state; only the upper triangular matrix is considered; each component is either prescribed
stress or strain, depending on stressMask.

maxStrain(=1e6)
Maximal asolute value of strain allowed in the simulation. If reached, the simulation is con-
sidered as finished

maxStrainRate(=1e3)
Maximal absolute value of strain rate (both normal and shear components of strain)

mod(=.1)
Predictor modificator, by trail-and-error analysis the value 0.1 was found as the best.

nSteps(=1000)
Number of steps of the simulation.

poissonEstimation(=.25)
Estimation of macroscopic Poisson’s ratio, used used for the first simulation step

progress(=0.)
Actual progress of the simulation with Controller.

strain(=Vector6r::Zero())
Current strain (deformation) vector (εx,εy,εz,γyz,γzx,γxy) (auto-updated).

strainRate(=Vector6r::Zero())
Current strain rate vector.

stress(=Vector6r::Zero())
Current stress vector (σx,σy,σz,τyz,τzx,τxy)|yupdate|.

stressIdeal(=Vector6r::Zero())
Ideal stress vector at current time step.

stressMask(=0, all strains)
mask determining whether components of goal are strain (0) or stress (1). The order is
00,11,22,12,02,01 from the least significant bit. (e.g. 0b000011 is stress 00 and stress 11).

stressRate(=Vector6r::Zero())
Current stress rate vector (that is prescribed, the actual one slightly differ).

xxPath
“Time function” (piecewise linear) for xx direction. Sequence of couples of numbers. First
number is time, second number desired value of respective quantity (stress or strain). The
last couple is considered as final state (equal to (nSteps, goal)), other values are relative to
this state.
Example: nSteps=1000, goal[0]=300, xxPath=((2,3),(4,1),(5,2))
at step 400 (=5*1000/2) the value is 450 (=3*300/2),
at step 800 (=4*1000/5) the value is 150 (=1*300/2),
at step 1000 (=5*1000/5=nSteps) the value is 300 (=2*300/2=goal[0]).
See example scripts/test/peri3dController_example1 for illusration.

xyPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for xy direction, see xxPath

youngEstimation(=1e20)
Estimation of macroscopic Young’s modulus, used for the first simulation step

1.3. Global engines 37

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/peri3dController_example1
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/peri3dController_triaxialCompression
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/peri3dController_triaxialCompression
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/peri3dController_shear
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/peri3dController_example1

Yade Reference Documentation, Release 1st edition

yyPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for yy direction, see xxPath

yzPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for yz direction, see xxPath

zxPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for zx direction, see xxPath

zzPath(=vector<Vector2r>(1, Vector2r::Ones()))
Time function for zz direction, see xxPath

class yade.wrapper.PeriIsoCompressor(inherits BoundaryController → GlobalEngine → En-
gine → Serializable)

Compress/decompress cloud of spheres by controlling periodic cell size until it reaches prescribed
average stress, then moving to next stress value in given stress series.
charLen(=-1.)

Characteristic length, should be something like mean particle diameter (default -1=invalid
value))

currUnbalanced
Current value of unbalanced force

doneHook(=”“)
Python command to be run when reaching the last specified stress

globalUpdateInt(=20)
how often to recompute average stress, stiffness and unbalanced force

keepProportions(=true)
Exactly keep proportions of the cell (stress is controlled based on average, not its components

maxSpan(=-1.)
Maximum body span in terms of bbox, to prevent periodic cell getting too small. (auto-
computed)

maxUnbalanced(=1e-4)
if actual unbalanced force is smaller than this number, the packing is considered stable,

sigma
Current stress value

state(=0)
Where are we at in the stress series

stresses(=uninitalized)
Stresses that should be reached, one after another

class yade.wrapper.PeriTriaxController(inherits BoundaryController → GlobalEngine → En-
gine → Serializable)

Engine for independently controlling stress or strain in periodic simulations.
strainStress contains absolute values for the controlled quantity, and stressMask determines
meaning of those values (0 for strain, 1 for stress): e.g. (1<<0 | 1<<2) = 1 | 4 = 5 means
that strainStress[0] and strainStress[2] are stress values, and strainStress[1] is strain.
See scripts/test/periodic-triax.py for a simple example.
absStressTol(=1e3)

Absolute stress tolerance
currUnbalanced(=NaN)

current unbalanced force (updated every globUpdate) (auto-updated)
doneHook(=uninitalized)

python command to be run when the desired state is reached
dynCell(=false)

Imposed stress can be controlled using the packing stiffness or by applying the laws of dynamic
(dynCell=true). Don’t forget to assign a mass to the cell.

38 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

externalWork(=0)
Work input from boundary controller.

globUpdate(=5)
How often to recompute average stress, stiffness and unbalaced force.

goal
Desired stress or strain values (depending on stressMask), strains defined as
strain(i)=log(Fii).

Warning: Strains are relative to the O.cell.refSize (reference cell size), not the current
one (e.g. at the moment when the new strain value is set).

growDamping(=.25)
Damping of cell resizing (0=perfect control, 1=no control at all); see also wallDamping in
TriaxialStressController.

mass(=NaN)
mass of the cell (user set); if not set and dynCell is used, it will be computed as sum of masses
of all particles.

maxBodySpan(=Vector3r::Zero())
maximum body dimension (auto-computed)

maxStrainRate(=Vector3r(1, 1, 1))
Maximum strain rate of the periodic cell.

maxUnbalanced(=1e-4)
maximum unbalanced force.

prevGrow(=Vector3r::Zero())
previous cell grow

relStressTol(=3e-5)
Relative stress tolerance

reversedForces(=false)
For some constitutive laws (practicaly all laws based on ScGeom), normalForce and shearForce
on interactions are in the reverse sense and this flag must be true (mandatory). see bugreport

stiff(=Vector3r::Zero())
average stiffness (only every globUpdate steps recomputed from interactions) (auto-updated)

strain(=Vector3r::Zero())
cell strain (auto-updated)

strainRate(=Vector3r::Zero())
cell strain rate (auto-updated)

stress(=Vector3r::Zero())
diagonal terms of the stress tensor

stressMask(=0, all strains)
mask determining strain/stress (0/1) meaning for goal components

stressTensor(=Matrix3r::Zero())
average stresses, updated at every step (only every globUpdate steps recomputed from inter-
actions if !dynCell)

class yade.wrapper.SampleCapillaryPressureEngine(inherits TriaxialStressController →
BoundaryController → GlobalEngine →
Engine → Serializable)

It produces the isotropic compaction of an assembly and allows to controlled the capillary pressure
inside (uses Law2_ScGeom_CapillaryPhys_Capillarity).
Pressure(=0)

Value of the capillary pressure Uc=Ugas-Uliquid (see Law2_ScGeom_CapillaryPhys_Capil-
larity). [Pa]

1.3. Global engines 39

https://bugs.launchpad.net/yade/+bug/493102

Yade Reference Documentation, Release 1st edition

PressureVariation(=0)
Variation of the capillary pressure (each iteration). [Pa]

SigmaPrecision(=0.001)
tolerance in terms of mean stress to consider the packing as stable

StabilityCriterion(=0.01)
tolerance in terms of :yref:’TriaxialCompressionEngine::UnbalancedForce’ to consider the
packing as stable

UnbalancedForce(=1)
mean resultant forces divided by mean contact force

binaryFusion(=1)
If yes, capillary force are set to 0 when, at least, 1 overlap is detected for a meniscus. If no,
capillary force is divided by the number of overlaps.

fusionDetection(=1)
Is the detection of menisci overlapping activated?

pressureVariationActivated(=1)
Is the capillary pressure varying?

class yade.wrapper.ThreeDTriaxialEngine(inherits TriaxialStressController → BoundaryCon-
troller → GlobalEngine → Engine → Serializable)

The engine perform a triaxial compression with a control in direction ‘i’ in stress (if stressControl_i)
else in strain.
For a stress control the imposed stress is specified by ‘sigma_i’ with a ‘max_veli’ depending on
‘strainRatei’. To obtain the same strain rate in stress control than in strain control you need to
set ‘wallDamping = 0.8’. For a strain control the imposed strain is specified by ‘strainRatei’. With
this engine you can also perform internal compaction by growing the size of particles by using
TriaxialStressController::controlInternalStress. For that, just switch on ‘internalCom-
paction=1’ and fix sigma_iso=value of mean pressure that you want at the end of the internal
compaction.
Key(=”“)

A string appended at the end of all files, use it to name simulations.
UnbalancedForce(=1)

mean resultant forces divided by mean contact force
currentStrainRate1(=0)

current strain rate in direction 1 - converging to :yref:’ThreeDTriaxialEngine::strainRate1’
(./s)

currentStrainRate2(=0)
current strain rate in direction 2 - converging to :yref:’ThreeDTriaxialEngine::strainRate2’
(./s)

currentStrainRate3(=0)
current strain rate in direction 3 - converging to :yref:’ThreeDTriaxialEngine::strainRate3’
(./s)

frictionAngleDegree(=-1)
Value of friction used in the simulation if (updateFrictionAngle)

setContactProperties((float)arg2) → None
Assign a new friction angle (degrees) to dynamic bodies and relative interactions

strainRate1(=0)
target strain rate in direction 1 (./s)

strainRate2(=0)
target strain rate in direction 2 (./s)

strainRate3(=0)
target strain rate in direction 3 (./s)

40 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

stressControl_1(=true)
Switch to choose a stress or a strain control in directions 1

stressControl_2(=true)
Switch to choose a stress or a strain control in directions 2

stressControl_3(=true)
Switch to choose a stress or a strain control in directions 3

updateFrictionAngle(=false)
Switch to activate the update of the intergranular frictionto the value
:yref:’ThreeDTriaxialEngine::frictionAngleDegree

class yade.wrapper.TriaxialCompressionEngine(inherits TriaxialStressController → Bound-
aryController → GlobalEngine → Engine →
Serializable)

The engine is a state machine with the following states; transitions my be automatic, see below.
1.STATE_ISO_COMPACTION: isotropic compaction (compression) until the prescribed mean
pressue sigmaIsoCompaction is reached and the packing is stable. The compaction happens
either by straining the walls (!internalCompaction) or by growing size of grains (internalCom-
paction).

2.STATE_ISO_UNLOADING: isotropic unloading from the previously reached state, until the
mean pressure sigmaLateralConfinement is reached (and stabilizes).

Note: this state will be skipped if sigmaLateralConfinement == sigmaIsoCom-
paction.

3.STATE_TRIAX_LOADING: confined uniaxial compression: constant sigmaLateralConfine-
ment is kept at lateral walls (left, right, front, back), while top and bottom walls load the
packing in their axis (by straining), until the value of epsilonMax (deformation along the
loading axis) is reached. At this point, the simulation is stopped.

4.STATE_FIXED_POROSITY_COMPACTION: isotropic compaction (compression) until a
chosen porosity value (parameter:fixedPorosity). The six walls move with a chosen translation
speed (parameter StrainRate).

5.STATE_TRIAX_LIMBO: currently unused, since simulation is hard-stopped in the previous
state.

Transition from COMPACTION to UNLOADING is done automatically if autoUnload==true;
Transition from (UNLOADING to LOADING) or from (COMPACTION to LOADING:
if UNLOADING is skipped) is done automatically if autoCompressionActivation=true;
Both autoUnload and autoCompressionActivation are true by default.

Note: Most of the algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].
Key(=”“)

A string appended at the end of all files, use it to name simulations.
StabilityCriterion(=0.001)

tolerance in terms of TriaxialCompressionEngine::UnbalancedForce to consider the packing is
stable

UnbalancedForce(=1)
mean resultant forces divided by mean contact force

autoCompressionActivation(=true)
Auto-switch from isotropic compaction (or unloading state if sigmaLateralConfine-
ment<sigmaIsoCompaction) to deviatoric loading

autoStopSimulation(=true)
Stop the simulation when the sample reach STATE_LIMBO, or keep running

1.3. Global engines 41

Yade Reference Documentation, Release 1st edition

autoUnload(=true)
Auto-switch from isotropic compaction to unloading

currentState(=1)
There are 5 possible states in which TriaxialCompressionEngine can be. See above wrap-
per.TriaxialCompressionEngine

currentStrainRate(=0)
current strain rate - converging to TriaxialCompressionEngine::strainRate (./s)

epsilonMax(=0.5)
Value of axial deformation for which the loading must stop

fixedPoroCompaction(=false)
A special type of compaction with imposed final porosity TriaxialCompressio-
nEngine::fixedPorosity (WARNING : can give unrealistic results!)

fixedPorosity(=0)
Value of porosity chosen by the user

frictionAngleDegree(=-1)
Value of friction assigned just before the deviatoric loading

maxStress(=0)
Max value of stress during the simulation (for post-processing)

noFiles(=false)
If true, no files will be generated (*.xml, *.spheres,...)

previousSigmaIso(=1)
Previous value of inherited sigma_iso (used to detect manual changes of the confining pressure)

previousState(=1)
Previous state (used to detect manual changes of the state in .xml)

setContactProperties((float)arg2) → None
Assign a new friction angle (degrees) to dynamic bodies and relative interactions

sigmaIsoCompaction(=1)
Prescribed isotropic pressure during the compaction phase

sigmaLateralConfinement(=1)
Prescribed confining pressure in the deviatoric loading; might be different from TriaxialCom-
pressionEngine::sigmaIsoCompaction

strainRate(=0)
target strain rate (./s)

testEquilibriumInterval(=20)
interval of checks for transition between phases, higher than 1 saves computation time.

translationAxis(=TriaxialStressController::normal[, wall_bottom_id])
compression axis

uniaxialEpsilonCurr(=1)
Current value of axial deformation during confined loading (is reference to strain[1])

class yade.wrapper.TriaxialStressController(inherits BoundaryController → GlobalEngine→ Engine → Serializable)
An engine maintaining constant stresses on some boundaries of a parallepipedic packing. See also
TriaxialCompressionEngine
Note: The algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].
boxVolume

Total packing volume.
computeStressStrainInterval(=10)

42 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriaxialStressController::depth

externalWork(=0)
Energy provided by boundaries.|yupdate|

finalMaxMultiplier(=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

height(=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriaxialStressController::height

internalCompaction(=true)
Switch between ‘external’ (walls) and ‘internal’ (growth of particles) compaction.

isAxisymetric(=true)
if true, sigma_iso is assigned to sigma1, 2 and 3 (applies at each iteration and overrides
user-set values of s1,2,3)

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

max_vel(=0.001)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_vel1).

max_vel1
see TriaxialStressController::max_vel (auto-computed)

max_vel2
see TriaxialStressController::max_vel (auto-computed)

max_vel3
see TriaxialStressController::max_vel (auto-computed)

meanStress(=0)
Mean stress in the packing. (auto-updated)

porosity
Porosity of the packing.

previousMultiplier(=1)
(auto-updated)

previousStress(=0)
(auto-updated)

radiusControlInterval(=10)
sigma1(=0)

prescribed stress on axis 1 (see TriaxialStressController::isAxisymetric)
sigma2(=0)

prescribed stress on axis 2 (see TriaxialStressController::isAxisymetric)
sigma3(=0)

prescribed stress on axis 3 (see TriaxialStressController::isAxisymetric)

1.3. Global engines 43

Yade Reference Documentation, Release 1st edition

sigma_iso(=0)
prescribed confining stress (see TriaxialStressController::isAxisymetric)

spheresVolume
Total volume pf spheres.

stiffnessUpdateInterval(=10)
target strain rate (./s)

strain
Current strain (logarithmic).

stress((int)id) → Vector3
Return the mean stress vector acting on boundary ‘id’, with ‘id’ between 0 and 5.

thickness(=-1)
thickness of boxes (needed by some functions)

volumetricStrain(=0)
Volumetric strain (see TriaxialStressController::strain).|yupdate|

wallDamping(=0.25)
wallDamping coefficient - wallDamping=0 implies a (theoretical) perfect control, wallDamp-
ing=1 means no movement

wall_back_activated(=true)
if true, the engine is keeping stress constant on this boundary.

wall_back_id(=0)
id of boundary ; coordinate 2-

wall_bottom_activated(=true)
if true, the engine is keeping stress constant on this boundary.

wall_bottom_id(=0)
id of boundary ; coordinate 1-

wall_front_activated(=true)
if true, the engine is keeping stress constant on this boundary.

wall_front_id(=0)
id of boundary ; coordinate 2+

wall_left_activated(=true)
if true, the engine is keeping stress constant on this boundary.

wall_left_id(=0)
id of boundary ; coordinate 0-

wall_right_activated(=true)
if true, the engine is keeping stress constant on this boundary.

wall_right_id(=0)
id of boundary ; coordinate 0+

wall_top_activated(=true)
if true, the engine is keeping stress constant on this boundary.

wall_top_id(=0)
id of boundary ; coordinate 1+

width(=0)
size of the box (0-axis) (auto-updated)

width0(=0)
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.UniaxialStrainer(inherits BoundaryController → GlobalEngine → Engine→ Serializable)
Axial displacing two groups of bodies in the opposite direction with given strain rate.

44 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

absSpeed(=NaN)
alternatively, absolute speed of boundary motion can be specified; this is effective only at the
beginning and if strainRate is not set; changing absSpeed directly during simulation wil have
no effect. [ms�¹]

active(=true)
Whether this engine is activated

asymmetry(=0, symmetric)
If 0, straining is symmetric for negIds and posIds; for 1 (or -1), only posIds are strained and
negIds don’t move (or vice versa)

avgStress(=0)
Current average stress (auto-updated) [Pa]

axis(=2)
The axis which is strained (0,1,2 for x,y,z)

blockDisplacements(=false)
Whether displacement of boundary bodies perpendicular to the strained axis are blocked of
are free

blockRotations(=false)
Whether rotations of boundary bodies are blocked.

crossSectionArea(=NaN)
crossSection perpendicular to he strained axis; must be given explicitly [m²]

currentStrainRate(=NaN)
Current strain rate (update automatically). (auto-updated)

idleIterations(=0)
Number of iterations that will pass without straining activity after stopStrain has been reached

initAccelTime(=-200)
Time for strain reaching the requested value (linear interpolation). If negative, the time is
dt*(-initAccelTime), where dt is the timestep at the first iteration. [s]

limitStrain(=0, disabled)
Invert the sense of straining (sharply, without transition) one this value of strain is reached.
Not effective if 0.

negIds(=uninitalized)
Bodies on which strain will be applied (on the negative end along the axis)

notYetReversed(=true)
Flag whether the sense of straining has already been reversed (only used internally).

originalLength(=NaN)
Distance of reference bodies in the direction of axis before straining started (computed auto-
matically) [m]

posIds(=uninitalized)
Bodies on which strain will be applied (on the positive end along the axis)

setSpeeds(=false)
should we set speeds at the beginning directly, instead of increasing strain rate progressively?

stopStrain(=NaN)
Strain at which we will pause simulation; inactive (nan) by default; must be reached from
below (in absolute value)

strain(=0)
Current strain value, elongation/originalLength (auto-updated) [-]

strainRate(=NaN)
Rate of strain, starting at 0, linearly raising to strainRate. [-]

stressUpdateInterval(=10)
How often to recompute stress on supports.

1.3. Global engines 45

Yade Reference Documentation, Release 1st edition

1.3.3 Collider

Collider

SpatialQuickSortCollider

Pers is tentTriangulationCollider

FlatGridCollider

InsertionSortCollider

class yade.wrapper.Collider(inherits GlobalEngine → Engine → Serializable)
Abstract class for finding spatial collisions between bodies.
Special constructor
Derived colliders (unless they override pyHandleCustomCtorArgs) can be given list of BoundFunc-
tors which is used to initialize the internal boundDispatcher instance.
boundDispatcher(=new BoundDispatcher)

BoundDispatcher object that is used for creating bounds on collider’s request as necessary.
class yade.wrapper.FlatGridCollider(inherits Collider → GlobalEngine → Engine → Serial-

izable)
Non-optimized grid collider, storing grid as dense flat array. Each body is assigned to (possibly
multiple) cells, which are arranged in regular grid between aabbMin and aabbMax, with cell size
step (same in all directions). Bodies outsize (aabbMin, aabbMax) are handled gracefully, assigned
to closest cells (this will create spurious potential interactions). verletDist determines how much is
each body enlarged to avoid collision detection at every step.
Note: This collider keeps all cells in linear memory array, therefore will be memory-inefficient for
sparse simulations.

Warning: Body::bound objects are not used, BoundFunctors are not used either: assigning
cells to bodies is hard-coded internally. Currently handles Shapes are: Sphere.

Note: Periodic boundary is not handled (yet).
aabbMax(=Vector3r::Zero())

Upper corner of grid (approximate, might be rouded up to minStep.
aabbMin(=Vector3r::Zero())

Lower corner of grid.
step(=0)

Step in the grid (cell size)
verletDist(=0)

Length by which enlarge space occupied by each particle; avoids running collision detection
at every step.

class yade.wrapper.InsertionSortCollider(inherits Collider → GlobalEngine → Engine →
Serializable)

Collider with O(n log(n)) complexity, using Aabb for bounds.
At the initial step, Bodies’ bounds (along sortAxis) are first std::sort’ed along one axis (sortAxis),
then collided. The initial sort has O(n2) complexity, see Colliders’ performance for some informa-
tion (There are scripts in examples/collider-perf for measurements).

46 Chapter 1. Class reference (yade.wrapper module)

https://yade-dem.org/index.php/Colliders_performace

Yade Reference Documentation, Release 1st edition

Insertion sort is used for sorting the bound list that is already pre-sorted from last iteration, where
each inversion calls checkOverlap which then handles either overlap (by creating interaction if
necessary) or its absence (by deleting interaction if it is only potential).
Bodies without bounding volume (such as clumps) are handled gracefully and never collide. Deleted
bodies are handled gracefully as well.
This collider handles periodic boundary conditions. There are some limitations, notably:

1.No body can have Aabb larger than cell’s half size in that respective dimension. You get
exception it it does and gets in interaction.

2.No body can travel more than cell’s distance in one step; this would mean that the simulation
is numerically exploding, and it is only detected in some cases.

Stride can be used to avoid running collider at every step by enlarging the particle’s bounds,
tracking their velocities and only re-run if they might have gone out of that bounds (see Verlet list
for brief description and background) . This requires cooperation from NewtonIntegrator as well
as BoundDispatcher, which will be found among engines automatically (exception is thrown if they
are not found).
If you wish to use strides, set verletDist (length by which bounds will be enlarged in all direc-
tions) to some value, e.g. 0.05 × typical particle radius. This parameter expresses the tradeoff
between many potential interactions (running collider rarely, but with longer exact interaction res-
olution phase) and few potential interactions (running collider more frequently, but with less exact
resolutions of interactions); it depends mainly on packing density and particle radius distribution.
If you additionally set nBins to >=1, not all particles will have their bound enlarged by
verletDist; instead, they will be put to bins (in the statistical sense) based on magnitude of
their velocity; verletDist will only be used for particles in the fastest bin, whereas only propor-
tionally smaller length will be used for slower particles; The coefficient between bin’s velocities is
given by binCoeff.
binCoeff(=2)

Coefficient of bins for velocities, i.e. if binCoeff==5, successive bins have 5 × smaller velocity
peak than the previous one. (Passed to VelocityBins)

binOverlap(=0.8)
Relative bins hysteresis, to avoid moving body back and forth if its velocity is around the
border value. (Passed to VelocityBins)

dumpBounds() → tuple
Return representation of the internal sort data. The format is ([...],[...],[...]) for 3
axes, where each ... is a list of entries (bounds). The entry is a tuple with the fllowing items:

•coordinate (float)
•body id (int), but negated for negative bounds
•period numer (int), if the collider is in the periodic regime.

fastestBodyMaxDist(=-1)
Maximum displacement of the fastest body since last run; if >= verletDist, we could get out of
bboxes and will trigger full run. DEPRECATED, was only used without bins. (auto-updated)

histInterval(=100)
How often to show velocity bins graphically, if debug logging is enabled for VelocityBins.

maxRefRelStep(=.3)
(Passed to VelocityBins)

nBins(=5)
Number of velocity bins for striding. If <=0, bin-less strigin is used (this is however DEP-
RECATED).

numReinit(=0)
Cummulative number of bound array re-initialization.

1.3. Global engines 47

http://en.wikipedia.org/wiki/Verlet_list

Yade Reference Documentation, Release 1st edition

periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

sortAxis(=0)
Axis for the initial contact detection.

sortThenCollide(=false)
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

sweepFactor(=1.05)
Overestimation factor for the sweep velocity; must be >=1.0. Has no influence on verletDist,
only on the computed stride. [DEPRECATED, is used only when bins are not used].

verletDist(=-.05, Automatically initialized)
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be |verletDist| × minimum spherical particle radius; if there are no spherical particles, it
will be disabled.

class yade.wrapper.PersistentTriangulationCollider(inherits Collider → GlobalEngine →
Engine → Serializable)

Collision detection engine based on regular triangulation. Handles spheres and flat boundaries
(considered as infinite-sized bounding spheres).
haveDistantTransient(=false)

Keep distant interactions? If True, don’t delete interactions once bodies don’t overlap any-
more; constitutive laws will be responsible for requesting deletion. If False, delete as soon as
there is no object penetration.

class yade.wrapper.SpatialQuickSortCollider(inherits Collider → GlobalEngine → Engine →
Serializable)

Collider using quicksort along axes at each step, using Aabb bounds.
Its performance is lower than that of InsertionSortCollider (see Colliders’ performance), but the
algorithm is simple enought to make it good for checking other collider’s correctness.

1.3.4 FieldApplier

FieldApplier

CentralGravityEngine

AxialGravityEngine

HdapsGravityEngineGravityEngine

class yade.wrapper.FieldApplier(inherits GlobalEngine → Engine → Serializable)
Base for engines applying force files on particles. Not to be used directly.

class yade.wrapper.AxialGravityEngine(inherits FieldApplier → GlobalEngine → Engine →
Serializable)

Apply acceleration (independent of distance) directed towards an axis.

48 Chapter 1. Class reference (yade.wrapper module)

https://yade-dem.org/index.php/Colliders_performace

Yade Reference Documentation, Release 1st edition

acceleration(=0)
Acceleration magnitude [kgms�²]

axisDirection(=Vector3r::UnitX())
direction of the gravity axis (will be normalized automatically)

axisPoint(=Vector3r::Zero())
Point through which the axis is passing.

class yade.wrapper.CentralGravityEngine(inherits FieldApplier → GlobalEngine → Engine →
Serializable)

Engine applying acceleration to all bodies, towards a central body.
accel(=0)

Acceleration magnitude [kgms�²]
centralBody(=Body::ID_NONE)

The body towards which all other bodies are attracted.
reciprocal(=false)

If true, acceleration will be applied on the central body as well.
class yade.wrapper.GravityEngine(inherits FieldApplier → GlobalEngine → Engine → Serial-

izable)
Engine applying constant acceleration to all bodies.
gravity(=Vector3r::Zero())

Acceleration [kgms�²]
class yade.wrapper.HdapsGravityEngine(inherits GravityEngine → FieldApplier → Glob-

alEngine → Engine → Serializable)
Read accelerometer in Thinkpad laptops (HDAPS and accordingly set gravity within the simula-
tion. This code draws from hdaps-gl . See scripts/test/hdaps.py for an example.
accel(=Vector2i::Zero())

reading from the sysfs file
calibrate(=Vector2i::Zero())

Zero position; if NaN, will be read from the hdapsDir / calibrate.
calibrated(=false)

Whether calibrate was already updated. Do not set to True by hand unless you also give a
meaningful value for calibrate.

hdapsDir(=”/sys/devices/platform/hdaps”)
Hdaps directory; contains position (with accelerometer readings) and calibration (zero
acceleration).

msecUpdate(=50)
How often to update the reading.

updateThreshold(=4)
Minimum difference of reading from the file before updating gravity, to avoid jitter.

zeroGravity(=Vector3r(0, 0, -1))
Gravity if the accelerometer is in flat (zero) position.

1.3. Global engines 49

http://en.wikipedia.org/wiki/Active_hard_drive_protection
https://sourceforge.net/project/showfiles.php?group_id=138242
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/hdaps.py

Yade Reference Documentation, Release 1st edition

1.4 Partial engines

PartialEngine

PressTestEngineTrans lationEngine

KinematicEngine

CombinedKinematicEngine

RotationEngine HarmonicRotationEngine

InterpolatingHelixEngineHelixEngineHarmonicMotionEngine

InterpolatingDirectedForceEngine

ForceEngine

LawTester

StepDisplacer

TorqueEngine

FlowEngine

class yade.wrapper.PartialEngine(inherits Engine → Serializable)
Engine affecting only particular bodies in the simulation, defined by ids.
ids(=uninitalized)

Ids of bodies affected by this PartialEngine.
class yade.wrapper.CombinedKinematicEngine(inherits PartialEngine → Engine → Serializ-

able)
Engine for applying combined displacements on pre-defined bodies. Constructed using + operator
on regular KinematicEngines. The ids operated on are those of the first engine in the combination
(assigned automatically).
comb(=uninitalized)

Kinematic engines that will be combined by this one, run in the order given.
class yade.wrapper.FlowEngine(inherits PartialEngine → Engine → Serializable)

An engine to solve flow problem in saturated granular media
BACK_Boundary_MaxMin(=1)

If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

BOTTOM_Boundary_MaxMin(=1)
If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

CachedForces(=true)
Des/Activate the cached forces calculation

Debug(=false)
Activate debug messages

EpsVolPercent_RTRG(=0.01)
Percentuage of cumulate eps_vol at which retriangulation of pore space is performed

FRONT_Boundary_MaxMin(=1)
If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

Flow_imposed_BACK_Boundary(=true)
if false involve pressure imposed condition

Flow_imposed_BOTTOM_Boundary(=true)
if false involve pressure imposed condition

Flow_imposed_FRONT_Boundary(=true)
if false involve pressure imposed condition

50 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

Flow_imposed_LEFT_Boundary(=true)
if false involve pressure imposed condition

Flow_imposed_RIGHT_Boundary(=true)
if false involve pressure imposed condition

Flow_imposed_TOP_Boundary(=true)
if false involve pressure imposed condition

K(=0)
Permeability of the sample

LEFT_Boundary_MaxMin(=1)
If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

MaxPressure(=0)
Maximal value of water pressure within the sample

P_zero(=0)
Initial internal pressure for oedometer test

PermuteInterval(=100000)
Pore space re-triangulation period

Pressure_BACK_Boundary(=0)
Pressure imposed on back boundary

Pressure_BOTTOM_Boundary(=0)
Pressure imposed on bottom boundary

Pressure_FRONT_Boundary(=0)
Pressure imposed on front boundary

Pressure_LEFT_Boundary(=0)
Pressure imposed on left boundary

Pressure_RIGHT_Boundary(=0)
Pressure imposed on right boundary

Pressure_TOP_Boundary(=0)
Pressure imposed on top boundary

RIGHT_Boundary_MaxMin(=1)
If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

Relax(=1.9)
Gauss-Seidel relaxation

Sinus_Amplitude(=0)
Pressure value (amplitude) when sinusoidal pressure is applied

Sinus_Average(=0)
Pressure value (average) when sinusoidal pressure is applied

TOP_Boundary_MaxMin(=1)
If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

Tolerance(=1e-06)
Gauss-Seidel Tolerance

Update_Triangulation(=0)
If true the medium is retriangulated

WaveAction(=false)
Allow sinusoidal pressure condition to simulate ocean waves

blocked_grains(=false)
Grains will/won’t be moved by forces

1.4. Partial engines 51

Yade Reference Documentation, Release 1st edition

bottom_seabed_pressure(=0)
Fluid pressure measured at the bottom of the seabed on the symmetry axe

clearImposedPressure() → None
Clear the list of points with pressure imposed.

compute_K(=false)
Activates permeability measure within a granular sample

consolidation(=false)
Enable/Disable storing consolidation files

currentStrain(=0)
Current value of axial strain

currentStress(=0)
Current value of axial stress

eps_vol_max(=0)
Maximal absolute volumetric strain computed at each iteration

first(=true)
Controls the initialization/update phases

getFlux((int)cond) → float
Get influx in cell associated to an imposed P (indexed using ‘cond’).

id_sphere(=0)
Average velocity will be computed for all cells incident to that sphere

imposePressure((Vector3)pos, (float)p) → None
Impose pressure in cell of location ‘pos’.

intervals(=30)
Number of layers for pressure measurements

isActivated(=true)
Activates Flow Engine

liquefaction(=false)
Compute bottom_seabed_pressure if true, see below

loadFactor(=1.1)
Load multiplicator for oedometer test

meanK_correction(=true)
Local permeabilities’ correction through meanK threshold

meanK_opt(=false)
Local permeabilities’ correction through an optimized threshold

permeability_factor(=1.0)
a permability multiplicator

porosity(=0)
Porosity computed at each retriangulation

save_mgpost(=false)
Enable/disable mgpost file creation

save_mplot(=false)
Enable/disable mplot files creation

save_vtk(=false)
Enable/disable vtk files creation for visualization

slice_pressures(=false)
Enable/Disable slice pressure measurement

slip_boundary(=true)
Controls friction condition on lateral walls

52 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

useSolver(=0)
Solver to use

velocity_profile(=false)
Enable/Disable slice velocity measurement

class yade.wrapper.ForceEngine(inherits PartialEngine → Engine → Serializable)
Apply contact force on some particles at each step.
force(=Vector3r::Zero())

Force to apply.
class yade.wrapper.HarmonicMotionEngine(inherits KinematicEngine → PartialEngine → En-

gine → Serializable)
This engine implements the harmonic oscillation of bodies. http://en.wikipedia.org/wiki/Simple_-
harmonic_motion#Dynamics_of_simple_harmonic_motion
A(=Vector3r::Zero())

Amplitude [m]
f(=Vector3r::Zero())

Frequency [hertz]
fi(=Vector3r(Mathr::PI/2.0, Mathr::PI/2.0, Mathr::PI/2.0))

Initial phase [radians]. By default, the body oscillates around initial position.
class yade.wrapper.HarmonicRotationEngine(inherits RotationEngine → KinematicEngine →

PartialEngine → Engine → Serializable)
This engine implements the harmonic-rotation oscillation of bodies.
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_-
motion ; please, set dynamic=False for bodies, droven by this engine, otherwise amplitude will be
2x more, than awaited.
A(=0)

Amplitude [rad]
f(=0)

Frequency [hertz]
fi(=Mathr::PI/2.0)

Initial phase [radians]. By default, the body oscillates around initial position.
class yade.wrapper.HelixEngine(inherits RotationEngine → KinematicEngine → PartialEngine→ Engine → Serializable)

Engine applying both rotation and translation, along the same axis, whence the name HelixEngine

angleTurned(=0)
How much have we turned so far. (auto-updated) [rad]

linearVelocity(=0)
Linear velocity [m/s]

class yade.wrapper.InterpolatingDirectedForceEngine(inherits ForceEngine → Par-
tialEngine → Engine → Serializ-
able)

Engine for applying force of varying magnitude but constant direction on subscribed bodies. times
and magnitudes must have the same length, direction (normalized automatically) gives the orien-
tation.
As usual with interpolating engines: the first magnitude is used before the first time point, last
magnitude is used after the last time point. Wrap specifies whether time wraps around the last
time point to the first time point.
direction(=Vector3r::UnitX())

Contact force direction (normalized automatically)
magnitudes(=uninitalized)

Force magnitudes readings [N]

1.4. Partial engines 53

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Reference Documentation, Release 1st edition

times(=uninitalized)
Time readings [s]

wrap(=false)
wrap to the beginning of the sequence if beyond the last time point

class yade.wrapper.InterpolatingHelixEngine(inherits HelixEngine → RotationEngine →
KinematicEngine → PartialEngine → Engine→ Serializable)

Engine applying spiral motion, finding current angular velocity by linearly interpolating in times
and velocities and translation by using slope parameter.
The interpolation assumes the margin value before the first time point and last value after the last
time point. If wrap is specified, time will wrap around the last times value to the first one (note
that no interpolation between last and first values is done).
angularVelocities(=uninitalized)

List of angular velocities; manadatorily of same length as times. [rad/s]
slope(=0)

Axial translation per radian turn (can be negative) [m/rad]
times(=uninitalized)

List of time points at which velocities are given; must be increasing [s]
wrap(=false)

Wrap t if t>times_n, i.e. t_wrapped=t-N*(times_n-times_0)
class yade.wrapper.KinematicEngine(inherits PartialEngine → Engine → Serializable)

Abstract engine for applying prescribed displacement.
Note: Derived classes should override the apply with given list of ids (not action with Par-
tialEngine.ids), so that they work when combined together; velocity and angular velocity of all
subscribed bodies is reset before the apply method is called, it should therefore only increment
those quantities.

class yade.wrapper.LawTester(inherits PartialEngine → Engine → Serializable)
Prescribe and apply deformations of an interaction in terms of local mutual displacements and
rotations. The loading path is specified either using path (as sequence of 6-vectors containing
generalized displacements ux, uy, uz, ϕx, ϕy, ϕz) or disPath (ux, uy, uz) and rotPath (ϕx, ϕy,
ϕz). Time function with time values (step numbers) corresponding to points on loading path is
given by pathSteps. Loading values are linearly interpolated between given loading path points,
and starting zero-value (the initial configuration) is assumed for both path and pathSteps. hooks
can specify python code to run when respective point on the path is reached; when the path is
finished, doneHook will be run.
LawTester should be placed between InteractionLoop and NewtonIntegrator in the simulation
loop, since it controls motion via setting linear/angular velocities on particles; those velocities are
integrated by NewtonIntegrator to yield an actual position change, which in turn causes IGeom
to be updated (and contact law applied) when InteractionLoop is executed. Constitutive law
generating forces on particles will not affect prescribed particle motion, since both particles have
all DoFs blocked when first used with LawTester.
LawTester uses, as much as possible, IGeom to provide useful data (such as local coordinate system),
but is able to compute those independently if absent in the respective IGeom:
IGeom #DoFs LawTester support level

L3Geom 3 full

L6Geom 6 full

ScGeom 3 emulate local coordinate system

ScGeom6D 6 emulate local coordinate system

Dem3DofGeom 3 not supported

54 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

Depending on IGeom, 3 (ux, uy, uz) or 6 (ux, uy, uz, ϕx, ϕy, ϕz) degrees of freedom (DoFs)
are controlled with LawTester, by prescribing linear and angular velocities of both particles in
contact. All DoFs controlled with LawTester are orthogonal (fully decoupled) and are controlled
independently.
When 3 DoFs are controlled, rotWeight controls whether local shear is applied by moving particle
on arc around the other one, or by rotating without changing position; although such rotation
induces mutual rotation on the interaction, it is ignored with IGeom with only 3 DoFs. When 6
DoFs are controlled, only arc-displacement is applied for shear, since otherwise mutual rotation
would occur.
idWeight distributes prescribed motion between both particles (resulting local deformation is the
same if id1 is moved towards id2 or id2 towards id1). This is true only for ux, uy, uz, ϕx

however ; bending rotations ϕy, ϕz are nevertheless always distributed regardless of idWeight to
both spheres in inverse proportion to their radii, so that there is no shear induced.
LawTester knows current contact deformation from 2 sources: from its own internal data (which
are used for prescribing the displacement at every step), which can be accessed in uTest, and from
IGeom itself (depending on which data it provides), which is stored in uGeom. These two values
should be identical (disregarding numerical percision), and it is a way to test whether IGeom and
related functors compute what they are supposed to compute.
LawTester-operated interactions can be rendered with GlExtra_LawTester renderer.
See scripts/test/law-test.py for an example.
disPath(=uninitalized)

Loading path, where each Vector3 contains desired normal displacement and two components
of the shear displacement (in local coordinate system, which is being tracked automatically.
If shorter than rotPath, the last value is repeated.

displIsRel(=true)
Whether displacement values in disPath are normalized by reference contact length (r1+r2
for 2 spheres).

doneHook(=uninitalized)
Python command (as string) to run when end of the path is achieved. If empty, the engine
will be set dead.

hooks(=uninitalized)
Python commands to be run when the corresponding point in path is reached, before doing
other things in that particular step. See also doneHook.

idWeight(=1)
Float, usually �〈0,1〉, determining on how are displacements distributed between particles
(0 for id1, 1 for id2); intermediate values will apply respective part to each of them. This
parameter is ignored with 6-DoFs IGeom.

pathSteps(=vector<int>(1, 1), (constant step))
Step number for corresponding values in path; if shorter than path, distance between last 2
values is used for the rest.

refLength(=0)
Reference contact length, for rendering only.

renderLength(=0)
Characteristic length for the purposes of rendering, set equal to the smaller radius.

rotPath(=uninitalized)
Rotational components of the loading path, where each item contains torsion and two bending
rotations in local coordinates. If shorter than path, the last value is repeated.

rotWeight(=1)
Float �〈0,1〉 determining whether shear displacement is applied as rotation or displacement on
arc (0 is displacement-only, 1 is rotation-only). Not effective when mutual rotation is specified.

1.4. Partial engines 55

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/law-test.py

Yade Reference Documentation, Release 1st edition

step(=1)
Step number in which this engine is active; determines position in path, using pathSteps.

trsf(=uninitalized)
Transformation matrix for the local coordinate system. (auto-updated)

uGeom(=Vector6r::Zero())
Current generalized displacements (3 displacements, 3 rotations), as stored in the interation
itself. They should corredpond to uTest, otherwise a bug is indicated.

uTest(=Vector6r::Zero())
Current generalized displacements (3 displacements, 3 rotations), as they should be according
to this LawTester. Should correspond to uGeom.

uuPrev(=Vector6r::Zero())
Generalized displacement values reached in the previous step, for knowing which increment
to apply in the current step.

class yade.wrapper.PressTestEngine(inherits TranslationEngine → KinematicEngine → Par-
tialEngine → Engine → Serializable)

This class simulates the simple press work When the press cracks the solid brittle material, it
returns back to the initial position and stops the simulation loop.
numberIterationAfterDestruction(=0)

The number of iterations, which will be carry out after destruction [-]
predictedForce(=0)

The minimal force, after what the engine will look for a destruction [N]
riseUpPressHigher(=1)

After destruction press rises up. This is the relationship between initial press velocity and
velocity for going back [-]

class yade.wrapper.RotationEngine(inherits KinematicEngine → PartialEngine → Engine →
Serializable)

Engine applying rotation (by setting angular velocity) to subscribed bodies. If rotateAroundZero
is set, then each body is also displaced around zeroPoint.
angularVelocity(=0)

Angular velocity. [rad/s]
rotateAroundZero(=false)

If True, bodies will not rotate around their centroids, but rather around zeroPoint.
rotationAxis(=Vector3r::UnitX())

Axis of rotation (direction); will be normalized automatically.
zeroPoint(=Vector3r::Zero())

Point around which bodies will rotate if rotateAroundZero is True
class yade.wrapper.StepDisplacer(inherits PartialEngine → Engine → Serializable)

Apply generalized displacement (displacement or rotation) stepwise on subscribed bodies. Could
be used for purposes of contact law tests (by moving one sphere compared to an other), but in this
case, see rather LawTester
mov(=Vector3r::Zero())

Linear displacement step to be applied per iteration, by addition to State.pos.
rot(=Quaternionr::Identity())

Rotation step to be applied per iteration (via rotation composition with State.ori).
setVelocities(=false)

If false, positions and orientations are directly updated, without changing the speeds of con-
cerned bodies. If true, only velocity and angularVelocity are modified. In this second case
integrator is supposed to be used, so that, thanks to this Engine, the bodies will have the
prescribed jump over one iteration (dt).

class yade.wrapper.TorqueEngine(inherits PartialEngine → Engine → Serializable)
Apply given torque (momentum) value at every subscribed particle, at every step.

56 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

moment(=Vector3r::Zero())
Torque value to be applied.

class yade.wrapper.TranslationEngine(inherits KinematicEngine → PartialEngine → Engine→ Serializable)
This engine is the base class for different engines, which require any kind of motion.
translationAxis(=uninitalized)

Direction [Vector3]
velocity(=uninitalized)

Velocity [m/s]

1.5 Bounding volume creation

1.5.1 BoundFunctor

BoundFunctor

Bo1_ChainedCylinder_Aabb

Bo1_Facet_Aabb

Bo1_Sphere_Aabb

Bo1_Tetra_Aabb

Bo1_Wall_Aabb

Bo1_Box_Aabb

Bo1_Cylinder_Aabb

class yade.wrapper.BoundFunctor(inherits Functor → Serializable)
Functor for creating/updating Body::bound.

class yade.wrapper.Bo1_Box_Aabb(inherits BoundFunctor → Functor → Serializable)
Create/update an Aabb of a Box.

class yade.wrapper.Bo1_ChainedCylinder_Aabb(inherits BoundFunctor → Functor → Serializ-
able)

Functor creating Aabb from ChainedCylinder.
aabbEnlargeFactor

Relative enlargement of the bounding box; deactivated if negative.
Note: This attribute is used to create distant interaction, but is only meaningful with an
IGeomFunctor which will not simply discard such interactions: Ig2_Cylinder_Cylinder_-
Dem3DofGeom::distFactor / Ig2_Cylinder_Cylinder_ScGeom::interactionDetectionFactor
should have the same value as aabbEnlargeFactor.

class yade.wrapper.Bo1_Cylinder_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from Cylinder.

1.5. Bounding volume creation 57

Yade Reference Documentation, Release 1st edition

aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.
Note: This attribute is used to create distant interaction, but is only meaningful with an
IGeomFunctor which will not simply discard such interactions: Ig2_Cylinder_Cylinder_-
Dem3DofGeom::distFactor / Ig2_Cylinder_Cylinder_ScGeom::interactionDetectionFactor
should have the same value as aabbEnlargeFactor.

class yade.wrapper.Bo1_Facet_Aabb(inherits BoundFunctor → Functor → Serializable)
Creates/updates an Aabb of a Facet.

class yade.wrapper.Bo1_Sphere_Aabb(inherits BoundFunctor → Functor → Serializable)
Functor creating Aabb from Sphere.
aabbEnlargeFactor

Relative enlargement of the bounding box; deactivated if negative.
Note: This attribute is used to create distant interaction, but is only meaningful with
an IGeomFunctor which will not simply discard such interactions: Ig2_Sphere_Sphere_-
Dem3DofGeom::distFactor / Ig2_Sphere_Sphere_ScGeom::interactionDetectionFactor
should have the same value as aabbEnlargeFactor.

class yade.wrapper.Bo1_Tetra_Aabb(inherits BoundFunctor → Functor → Serializable)
Create/update Aabb of a Tetra

class yade.wrapper.Bo1_Wall_Aabb(inherits BoundFunctor → Functor → Serializable)
Creates/updates an Aabb of a Wall

1.5.2 BoundDispatcher

class yade.wrapper.BoundDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).
activated(=true)

Whether the engine is activated (only should be changed by the collider)
dispFunctor((Shape)arg2) → BoundFunctor

Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

sweepDist(=0)
Distance by which enlarge all bounding boxes, to prevent collider from being run at every
step (only should be changed by the collider).

58 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

1.6 Interaction Geometry creation

1.6.1 IGeomFunctor

IGeomFunctor

Ig2_Sphere_Sphere_Dem3DofGeom

Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D

Ig2_Wall_Sphere_ScGeom

Ig2_Sphere_Sphere_L6Geom

Ig2_Sphere_Sphere_L3Geom

Ig2_Sphere_Sphere_ScGeom6D

Ig2_Sphere_Sphere_ScGeom

Ig2_Facet_Sphere_Dem3DofGeom

Ig2_Facet_Sphere_ScGeom

Ig2_Sphere_ChainedCylinder_CylScGeom

Ig2_Wall_Sphere_L3Geom

Ig2_Facet_Sphere_L3Geom

Ig2_Box_Sphere_ScGeom

Ig2_Tetra_Tetra_TTetraGeom

Ig2_Box_Sphere_ScGeom6D

Ig2_Wall_Sphere_Dem3DofGeom

class yade.wrapper.IGeomFunctor(inherits Functor → Serializable)
Functor for creating/updating Interaction::geom objects.

class yade.wrapper.Ig2_Box_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializable)
Create an interaction geometry ScGeom from Box and Sphere, representing the box with a projected
virtual sphere of same radius.

class yade.wrapper.Ig2_Box_Sphere_ScGeom6D(inherits Ig2_Box_Sphere_ScGeom → IGeom-
Functor → Functor → Serializable)

Create an interaction geometry ScGeom6D from Box and Sphere, representing the box with a
projected virtual sphere of same radius.

class yade.wrapper.Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D(inherits IGeomFunc-
tor → Functor → Se-
rializable)

Create/update a ScGeom instance representing connexion between chained cylinders.
interactionDetectionFactor(=1)

Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
class yade.wrapper.Ig2_Facet_Sphere_Dem3DofGeom(inherits IGeomFunctor → Functor → Se-

rializable)
Compute geometry of facet-sphere contact with normal and shear DOFs. As in all other
Dem3DofGeom-related classes, total formulation of both shear and normal deformations is used.
See Dem3DofGeom_FacetSphere for more information.

class yade.wrapper.Ig2_Facet_Sphere_L3Geom(inherits Ig2_Sphere_Sphere_L3Geom → IGe-
omFunctor → Functor → Serializable)

Incrementally compute L3Geom for contact between Facet and Sphere. Uses attributes of Ig2_-
Sphere_Sphere_L3Geom.

1.6. Interaction Geometry creation 59

Yade Reference Documentation, Release 1st edition

class yade.wrapper.Ig2_Facet_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializ-
able)

Create/update a ScGeom instance representing intersection of Facet and Sphere.
shrinkFactor(=0, no shrinking)

The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2×*shrinkFactor*. If zero, no shrinking is done.

class yade.wrapper.Ig2_Sphere_ChainedCylinder_CylScGeom(inherits IGeomFunctor →
Functor → Serializable)

Create/update a ScGeom instance representing intersection of two Spheres.
interactionDetectionFactor(=1)

Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
class yade.wrapper.Ig2_Sphere_Sphere_Dem3DofGeom(inherits IGeomFunctor → Functor →

Serializable)
Functor handling contact of 2 spheres, producing Dem3DofGeom instance
distFactor(=-1)

Factor of sphere radius such that sphere “touch” if their centers are not further than distFac-
tor*(r1+r2); if negative, equilibrium distance is the sum of the sphere’s radii.

class yade.wrapper.Ig2_Sphere_Sphere_L3Geom(inherits IGeomFunctor → Functor → Serializ-
able)

Functor for computing incrementally configuration of 2 Spheres stored in L3Geom; the configuration
is positioned in global space by local origin c (contact point) and rotation matrix T (orthonormal
transformation matrix), and its degrees of freedom are local displacement u (in one normal and
two shear directions); with Ig2_Sphere_Sphere_L6Geom and L6Geom, there is additionally ϕ.
The first row of T , i.e. local x-axis, is the contact normal noted n for brevity. Additionally, quasi-
constant values of u0 (and ϕ0) are stored as shifted origins of u (and ϕ); therefore, current value
of displacement is always u◦ − u0.
Suppose two spheres with radii ri, positions xi, velocities vi, angular velocities ωi.
When there is not yet contact, it will be created if uN = |x◦2 − x◦1| − |fd|(r1 + r2) < 0, where fd is
distFactor (sometimes also called ‘‘interaction radius’‘). If fd > 0, then u0x will be initalized to
uN, otherwise to 0. In another words, contact will be created if spheres enlarged by |fd| touch, and
the ‘‘equilibrium distance” (where ux − u − 0x is zero) will be set to the current distance if fd is
positive, and to the geometrically-touching distance if negative.
Local axes (rows of T) are initially defined as follows:

•local x-axis is n = xl = ̂x2 − x1;
•local y-axis positioned arbitrarily, but in a deterministic manner: aligned with the xz plane
(if ny < nz) or xy plane (otherwise);

•local z-axis zl = xl × yl.
If there has already been contact between the two spheres, it is updated to keep track of rigid
motion of the contact (one that does not change mutual configuration of spheres) and mutual
configuration changes. Rigid motion transforms local coordinate system and can be decomposed
in rigid translation (affecting c), and rigid rotation (affecting T), which can be split in rotation or

perpendicular to the normal and rotation ot (‘‘twist’‘) parallel with the normal:

o	
r = n− × n◦.

Since velocities are known at previous midstep (t− ∆t/2), we consider mid-step normal

n	 =
n− + n◦

2
.

60 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

For the sake of numerical stability, n	 is re-normalized after being computed, unless prohibited by
approxMask. If approxMask has the appropriate bit set, the mid-normal is not compute, and we
simply use n	 ≈ n−.
Rigid rotation parallel with the normal is

o	
t = n	

(
n	 ·

ω	
1 +ω	

2

2

)
∆t.

Branch vectors b1, b2 (connecting x◦1, x◦2 with c◦ are computed depending on noRatch (see here).

b1 =

{
r1n

◦ with noRatch
c◦ − x◦1 otherwise

b2 =

{
−r2n

◦ with noRatch
c◦ − x◦2 otherwise

Relative velocity at c◦ can be computed as

v	r = (ṽ	2 +ω2 × b2) − (v1 +ω1 × b1)

where ṽ2 is v2 without mean-field velocity gradient in periodic boundary conditions (see
Cell.homoDeform). In the numerial implementation, the normal part of incident velocity is re-
moved (since it is computed directly) with v	r2 = v	r − (n	 · v	r)n	.
Any vector a expressed in global coordinates transforms during one timestep as

a◦ = a− + v	r ∆t− a− × o	
r − a− × t	r

where the increments have the meaning of relative shear, rigid rotation normal to n and rigid
rotation parallel with n. Local coordinate system orientation, rotation matrix T , is updated by
rows, i.e.

T ◦ =

n◦
x n◦

y n◦
z

T−
1,• − T−

1,• × o	
r − T−

1,• × o	
t

T−
2,• − T−

2,• × o	
r − T−

,• × o	
t

This matrix is re-normalized (unless prevented by approxMask) and mid-step transformation is
computed using quaternion spherical interpolation as

T	 = Slerp
(
T−; T◦; t = 1/2

)
.

Depending on approxMask, this computation can be avoided by approximating T	 = T−.
Finally, current displacement is evaluated as

u◦ = u− + T	v	r ∆t.

For the normal component, non-incremental evaluation is preferred, giving

u◦
x = |x◦2 − x◦1|− (r1 + r2)

1.6. Interaction Geometry creation 61

Yade Reference Documentation, Release 1st edition

If this functor is called for L6Geom, local rotation is updated as

ϕ◦ = ϕ− + T	∆t(ω2 −ω1)

approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.
1 use previous transformation to transform velocities (which are known at mid-steps),

instead of mid-step transformation computed as quaternion slerp at t=0.5.
2 do not take average (mid-step) normal when computing relative shear displacement,

use previous value instead
4 do not re-normalize average (mid-step) normal, if used.…

By default, the mask is zero, wherefore none of these approximations is used.

distFactor(=1)
Create interaction if spheres are not futher than |distFactor|*(r1+r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘zero’
one).

noRatch(=true)
See Ig2_Sphere_Sphere_ScGeom.avoidGranularRatcheting.

trsfRenorm(=100)
How often to renormalize trsf; if non-positive, never renormalized (simulation might be un-
stable)

class yade.wrapper.Ig2_Sphere_Sphere_L6Geom(inherits Ig2_Sphere_Sphere_L3Geom → IGe-
omFunctor → Functor → Serializable)

Incrementally compute L6Geom for contact of 2 spheres.
class yade.wrapper.Ig2_Sphere_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializ-

able)
Create/update a ScGeom instance representing the geometry of a contact point between two
:yref:‘Spheres<Sphere>‘s.
avoidGranularRatcheting

Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2_Sphere_ChainedCylinder_-
CylScGeom.
Short explanation of what we want to avoid :
Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming b1 is fixed, impose this displacement to b2 :

1.translation dx in the normal direction
2.rotation a
3.translation -dx (back to the initial position)
4.rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotation×branch is not constant
(typically if it is defined from the vector center→contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.
It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant

62 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.
The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis of
a cycle that differs from the one shown above. One will find interesting discussions in e.g.
DOI 10.1103/PhysRevE.77.031304, even though solution it suggests is not fully applied here
(equations of motion are not incorporating alpha, in contradiction with what is suggested by
McNamara et al.).

interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.
InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.
Note: This parameter is functionally coupled with Bo1_Sphere_Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

class yade.wrapper.Ig2_Sphere_Sphere_ScGeom6D(inherits Ig2_Sphere_Sphere_ScGeom →
IGeomFunctor → Functor → Serializable)

Create/update a ScGeom6D instance representing the geometry of a contact point between two
:yref:‘Spheres<Sphere>‘s, including relative rotations.
creep(=false)

Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twistCreep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2_-
ScGeom6D_CohFrictPhys_CohesionMoment.

updateRotations(=true)
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_Tetra_Tetra_TTetraGeom(inherits IGeomFunctor → Functor → Seri-
alizable)

Create/update geometry of collision between 2 tetrahedra (TTetraGeom instance)
class yade.wrapper.Ig2_Wall_Sphere_Dem3DofGeom(inherits IGeomFunctor → Functor → Se-

rializable)
Create/update contact of Wall and Sphere (Dem3DofGeom_WallSphere instance)

class yade.wrapper.Ig2_Wall_Sphere_L3Geom(inherits Ig2_Sphere_Sphere_L3Geom → IGe-
omFunctor → Functor → Serializable)

Incrementally compute L3Geom for contact between Wall and Sphere. Uses attributes of Ig2_-
Sphere_Sphere_L3Geom.

class yade.wrapper.Ig2_Wall_Sphere_ScGeom(inherits IGeomFunctor → Functor → Serializ-
able)

Create/update a ScGeom instance representing intersection of Wall and Sphere.
noRatch(=true)

Avoid granular ratcheting

1.6.2 IGeomDispatcher

class yade.wrapper.IGeomDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).
dispFunctor((Shape)arg2, (Shape)arg3) → IGeomFunctor

Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

1.6. Interaction Geometry creation 63

Yade Reference Documentation, Release 1st edition

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

1.7 Interaction Physics creation

1.7.1 IPhysFunctor

IPhysFunctor

Ip2_RpmMat_RpmMat_RpmPhys

Ip2_2xNormalInelas ticMat_NormalInelasticityPhys

Ip2_FrictMat_FrictMat_CapillaryPhys

Ip2_FrictMat_FrictMat_FrictPhys Ip2_FrictMat_FrictMat_ViscoFrictPhys

Ip2_FrictMat_FrictMat_MindlinPhys

Ip2_MomentMat_MomentMat_MomentPhys

Ip2_WireMat_WireMat_WirePhys

Ip2_CpmMat_CpmMat_CpmPhys

Ip2_CFpmMat_CFpmMat_CFpmPhys

Ip2_CohFrictMat_CohFrictMat_CohFrictPhys

Ip2_2xFrictMat_CSPhys

Ip2_ViscElMat_ViscElMat_ViscElPhys

class yade.wrapper.IPhysFunctor(inherits Functor → Serializable)
Functor for creating/updating Interaction::phys objects.

class yade.wrapper.Ip2_2xFrictMat_CSPhys(inherits IPhysFunctor → Functor → Serializable)
Functor creating CSPhys from two FrictMat. See Law2_Dem3Dof_CSPhys_CundallStrack for
details.

class yade.wrapper.Ip2_2xNormalInelasticMat_NormalInelasticityPhys(inherits IPhys-
Functor → Func-
tor → Serializ-
able)

The RelationShips for using Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity
In these RelationShips all the attributes of the interactions (which are of NormalInelas-
ticityPhys type) are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

64 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

betaR(=0.12)
Parameter for computing the torque-stifness : T-stifness = betaR * Rmoy^2

class yade.wrapper.Ip2_CFpmMat_CFpmMat_CFpmPhys(inherits IPhysFunctor → Functor → Se-
rializable)

Converts 2 CFpmmat instances to CFpmPhys with corresponding parameters.
Alpha(=0)

Defines the ratio ks/kn.
Beta(=0)

Defines the ratio kr/(ks*meanRadius^2) to compute the resistive moment in rotation. [-]
cohesion(=0)

Defines the maximum admissible tangential force in shear FsMax=cohesion*crossSection. [Pa]
cohesiveTresholdIteration(=1)

Should new contacts be cohesive? They will before this iter, they won’t afterward.
eta(=0)

Defines the maximum admissible resistive moment in rotation MtMax=eta*meanRadius*Fn.
[-]

strengthSoftening(=0)
Defines the softening when Dtensile is reached to avoid explosion of the contact. Typically,
when D > Dtensile, Fn=FnMax - (kn/strengthSoftening)*(Dtensile-D). [-]

tensileStrength(=0)
Defines the maximum admissible normal force in traction Fn-
Max=tensileStrength*crossSection. [Pa]

useAlphaBeta(=false)
If true, stiffnesses are computed based on Alpha and Beta.

class yade.wrapper.Ip2_CohFrictMat_CohFrictMat_CohFrictPhys(inherits IPhysFunctor →
Functor → Serializable)

Generates cohesive-frictional interactions with moments. Used in the contact law Law2_Sc-
Geom6D_CohFrictPhys_CohesionMoment.
setCohesionNow(=false)

If true, assign cohesion to all existing contacts in current time-step. The flag is turned false
automatically, so that assignment is done in the current timestep only.

setCohesionOnNewContacts(=false)
If true, assign cohesion at all new contacts. If false, only existing contacts can be cohesive (also
see Ip2_CohFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow), and new contacts are
only frictional.

class yade.wrapper.Ip2_CpmMat_CpmMat_CpmPhys(inherits IPhysFunctor → Functor → Serial-
izable)

Convert 2 CpmMat instances to CpmPhys with corresponding parameters. Uses simple (arith-
metic) averages if material are different. Simple copy of parameters is performed if the material is
shared between both particles. See cpm-model for detals.
cohesiveThresholdIter(=10)

Should new contacts be cohesive? They will before this iter#, they will not be afterwards. If
0, they will never be. If negative, they will always be created as cohesive (10 by default).

class yade.wrapper.Ip2_FrictMat_FrictMat_CapillaryPhys(inherits IPhysFunctor → Functor→ Serializable)
RelationShips to use with Law2_ScGeom_CapillaryPhys_Capillarity

In these RelationShips all the interaction attributes are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

1.7. Interaction Physics creation 65

Yade Reference Documentation, Release 1st edition

class yade.wrapper.Ip2_FrictMat_FrictMat_FrictPhys(inherits IPhysFunctor → Functor →
Serializable)

Create a FrictPhys from two FrictMats. The compliance of one sphere under symetric point loads
is defined here as 1/(E.r), with E the stiffness of the sphere and r its radius, and corresponds to
a compliance 1/(2.E.r)=1/(E.D) from each contact point. The compliance of the contact itself
will be the sum of compliances from each sphere, i.e. 1/(E.D1)+1/(E.D2) in the general case,
or 1/(E.r) in the special case of equal sizes. Note that summing compliances corresponds to
an harmonic average of stiffnesss, which is how kn is actually computed in the Ip2_FrictMat_-
FrictMat_FrictPhys functor.
The shear stiffness ks of one sphere is defined via the material parameter ElastMat::poisson, as
ks=poisson*kn, and the resulting shear stiffness of the interaction will be also an harmonic average.

frictAngle(=uninitalized)
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

class yade.wrapper.Ip2_FrictMat_FrictMat_MindlinPhys(inherits IPhysFunctor → Functor→ Serializable)
Calculate some physical parameters needed to obtain the normal and shear stiffnesses according to
the Hertz-Mindlin’s formulation (as implemented in PFC).
Viscous parameters can be specified either using coefficients of restitution (en, es) or viscous
damping coefficient (βn, βs). The following rules apply: #. If the βn (βs) coefficient is given, it is
assigned to MindlinPhys.betan (MindlinPhys.betas) directly. #. If en is given, MindlinPhys.betan
is computed using βn = −(log en)/

√
π2 + (log en)2. The same applies to es, MindlinPhys.betas.

#. It is an error (exception) to specify both en and βn (es and βs). #. If neither en nor βn is
given, zero value for MindlinPhys.betan is used; there will be no viscous effects. #.If neither es
nor βs is given, the value of MindlinPhys.betan is used for MindlinPhys.betas as well.
The en, βn, es, βs are MatchMaker objects; they can be constructed from float values to always
return constant value.
See scripts/test/shots.py for an example of specifying en based on combination of parameters.
betan(=uninitalized)

Normal viscous damping coefficient βn.
betas(=uninitalized)

Shear viscous damping coefficient βs.
en(=uninitalized)

Normal coefficient of restitution en.
es(=uninitalized)

Shear coefficient of restitution es.
eta(=0.0)

Coefficient to determine the plastic bending moment
gamma(=0.0)

Surface energy parameter [J/m^2] per each unit contact surface, to derive DMT formulation
from HM

krot(=0.0)
Rotational stiffness for moment contact law

ktwist(=0.0)
Torsional stiffness for moment contact law

class yade.wrapper.Ip2_FrictMat_FrictMat_ViscoFrictPhys(inherits Ip2_FrictMat_Frict-
Mat_FrictPhys → IPhysFunc-
tor → Functor → Serializable)

Create a FrictPhys from two FrictMats. The compliance of one sphere under symetric point loads
is defined here as 1/(E.r), with E the stiffness of the sphere and r its radius, and corresponds to
a compliance 1/(2.E.r)=1/(E.D) from each contact point. The compliance of the contact itself
will be the sum of compliances from each sphere, i.e. 1/(E.D1)+1/(E.D2) in the general case,

66 Chapter 1. Class reference (yade.wrapper module)

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/shots.py

Yade Reference Documentation, Release 1st edition

or 1/(E.r) in the special case of equal sizes. Note that summing compliances corresponds to
an harmonic average of stiffnesss, which is how kn is actually computed in the Ip2_FrictMat_-
FrictMat_FrictPhys functor.
The shear stiffness ks of one sphere is defined via the material parameter ElastMat::poisson, as
ks=poisson*kn, and the resulting shear stiffness of the interaction will be also an harmonic average.

class yade.wrapper.Ip2_MomentMat_MomentMat_MomentPhys(inherits IPhysFunctor → Functor→ Serializable)
Create MomentPhys from 2 instances of MomentMat.

1.If boolean userInputStiffness=true & useAlphaBeta=false, users can input Knormal, Kshear
and Krotate directly. Then, kn,ks and kr will be equal to these values, rather than calculated
E and v.

2.If boolean userInputStiffness=true & useAlphaBeta=true, users input Knormal, Alpha and
Beta. Then ks and kr are calculated from alpha & beta respectively.

3.If both are false, it calculates kn and ks are calculated from E and v, whilst kr = 0.
Alpha(=0)

Ratio of Ks/Kn
Beta(=0)

Ratio to calculate Kr
Knormal(=0)

Allows user to input stiffness properties from triaxial test. These will be passed to Moment-
Phys or NormShearPhys

Krotate(=0)
Allows user to input stiffness properties from triaxial test. These will be passed to Moment-
Phys or NormShearPhys

Kshear(=0)
Allows user to input stiffness properties from triaxial test. These will be passed to Moment-
Phys or NormShearPhys

useAlphaBeta(=false)
for users to choose whether to input stiffness directly or use ratios to calculate Ks/Kn

userInputStiffness(=false)
for users to choose whether to input stiffness directly or use ratios to calculate Ks/Kn

class yade.wrapper.Ip2_RpmMat_RpmMat_RpmPhys(inherits IPhysFunctor → Functor → Serial-
izable)

Convert 2 RpmMat instances to RpmPhys with corresponding parameters.
initDistance(=0)

Initial distance between spheres at the first step.
class yade.wrapper.Ip2_ViscElMat_ViscElMat_ViscElPhys(inherits IPhysFunctor → Functor→ Serializable)

Convert 2 instances of ViscElMat to ViscElPhys using the rule of consecutive connection.
class yade.wrapper.Ip2_WireMat_WireMat_WirePhys(inherits IPhysFunctor → Functor → Se-

rializable)
Converts 2 WireMat instances to WirePhys with corresponding parameters.
linkThresholdIteration(=1)

Iteration to create the link.

1.7.2 IPhysDispatcher

class yade.wrapper.IPhysDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).

1.7. Interaction Physics creation 67

Yade Reference Documentation, Release 1st edition

dispFunctor((Material)arg2, (Material)arg3) → IPhysFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

1.8 Constitutive laws

1.8.1 LawFunctor

LawFunctor

Law2_ScGeom_ViscoFrictPhys_CundallStrackLaw2_ScGeom_FrictPhys_CundallStrack

Law2_Dem3DofGeom_RockPMPhys_Rpm

Law2_ScGeom_CFpmPhys_Cohes iveFrictionalPM

Law2_CylScGeom_FrictPhys_CundallStrack

Law2_Dem3DofGeom_CpmPhys_Cpm

Law2_ScGeom_MindlinPhys_HertzWithLinearShear

Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity

Law2_L6Geom_FrictPhys_LinearLaw2_L3Geom_FrictPhys_ElPerfPl

Law2_Dem3DofGeom_FrictPhys_CundallStrack

Law2_ScGeom_WirePhys_WirePM

Law2_ScGeom6D_CohFrictPhys_Cohes ionMoment

Law2_ScGeom_ViscElPhys_Bas ic

Law2_SCG_MomentPhys_Cohes ionlessMomentRotation

Law2_ScGeom_MindlinPhys_Mindlin

Law2_Dem3Dof_CSPhys_CundallStrack

Law2_ScGeom_MindlinPhys_MindlinDeres iewitz

class yade.wrapper.LawFunctor(inherits Functor → Serializable)
Functor for applying constitutive laws on interactions.

class yade.wrapper.Law2_CylScGeom_FrictPhys_CundallStrack(inherits LawFunctor → Func-
tor → Serializable)

Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The

68 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(ϕ), with ϕ the friction angle.
Note: This law uses ScGeom; there is also functionally equivalent Law2_Dem3DofGeom_-
FrictPhys_CundallStrack, which uses Dem3DofGeom (sphere-box interactions are not implemented
for the latest).
Note: This law is well tested in the context of triaxial simulation, and has been used for a
number of published results (see e.g. [Scholtes2009b] and other papers from the same authors).
It is generalised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and
moments at contact.
neverErase(=false)

Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

class yade.wrapper.Law2_Dem3DofGeom_CpmPhys_Cpm(inherits LawFunctor → Functor → Seri-
alizable)

Constitutive law for the cpm-model.
epsSoft(=-3e-3, approximates confinement -20MPa precisely, -100MPa a little over, -200 and

-400 are OK (secant))
Strain at which softening in compression starts (non-negative to deactivate)

funcG((float)epsCrackOnset, (float)epsFracture[, (bool)neverDamage=False]) → float
Damage evolution law, evaluating the ω parameter. κD is historically maximum strain, ep-
sCrackOnset (ε0) = CpmPhys.epsCrackOnset, epsFracture = CpmPhys.epsFracture; if never-
Damage is True, the value returned will always be 0 (no damage).

omegaThreshold(=1., >=1. to deactivate, i.e. never delete any contacts)
damage after which the contact disappears (<1), since omega reaches 1 only for strain →+∞

relKnSoft(=.3)
Relative rigidity of the softening branch in compression (0=perfect elastic-plastic, <0 soften-
ing, >0 hardening)

yieldEllipseShift(=NaN)
horizontal scaling of the ellipse (shifts on the +x axis as interactions with +y are given)

yieldLogSpeed(=.1)
scaling in the logarithmic yield surface (should be <1 for realistic results; >=0 for meaningful
results)

yieldSigmaTMagnitude((float)sigmaN, (float)omega, (float)undamagedCohesion,
(float)tanFrictionAngle) → float

Return radius of yield surface for given material and state parameters; uses attributes of the
current instance (yieldSurfType etc), change them before calling if you need that.

yieldSurfType(=2)
yield function: 0: mohr-coulomb (original); 1: parabolic; 2: logarithmic, 3: log+lin_tension,
4: elliptic, 5: elliptic+log

class yade.wrapper.Law2_Dem3DofGeom_FrictPhys_CundallStrack(inherits LawFunctor →
Functor → Serializable)

Constitutive law for linear compression, no tension, and linear plasticity surface.
No longer maintained and linking to known bugs; :consider using yref:Law2_ScGeom_FrictPhys_-
CundallStrack.

class yade.wrapper.Law2_Dem3DofGeom_RockPMPhys_Rpm(inherits LawFunctor→ Functor→ Se-
rializable)

Constitutive law for the Rpm model
class yade.wrapper.Law2_Dem3Dof_CSPhys_CundallStrack(inherits LawFunctor → Functor →

Serializable)
Basic constitutive law published originally by Cundall&Strack; it has normal and shear stiffnesses
(Kn, Kn) and dry Coulomb friction. Operates on associated Dem3DofGeom and CSPhys instances.

1.8. Constitutive laws 69

Yade Reference Documentation, Release 1st edition

class yade.wrapper.Law2_L3Geom_FrictPhys_ElPerfPl(inherits LawFunctor → Functor → Se-
rializable)

Basic law for testing L3Geom; it bears no cohesion (unless noBreak is True), and plastic slip obeys
the Mohr-Coulomb criterion (unless noSlip is True).
noBreak(=false)

Do not break contacts when particles separate.
noSlip(=false)

No plastic slipping.
class yade.wrapper.Law2_L6Geom_FrictPhys_Linear(inherits Law2_L3Geom_FrictPhys_-

ElPerfPl → LawFunctor → Functor →
Serializable)

Basic law for testing L6Geom – linear in both normal and shear sense, without slip or breakage.
charLen(=1)

Characteristic length with the meaning of the stiffness ratios bending/shear and tor-
sion/normal.

class yade.wrapper.Law2_SCG_MomentPhys_CohesionlessMomentRotation(inherits LawFunc-
tor → Functor →
Serializable)

Contact law based on Plassiard et al. (2009) : A spherical discrete element model: calibration
procedure and incremental response. The functionality has been verified with results in the paper.
The contribution of stiffnesses are scaled according to the radius of the particle, as implemented
in that paper.
See also associated classes MomentMat, Ip2_MomentMat_MomentMat_MomentPhys, Moment-
Phys.
Note: This constitutive law can be used with triaxial test, but the following significant changes in
code have to be made: Ip2_MomentMat_MomentMat_MomentPhys and Law2_SCG_Moment-
Phys_CohesionlessMomentRotation have to be added. Since it uses ScGeom, it uses boxes rather
than facets. Spheres and boxes have to be changed to MomentMat rather than FrictMat.
preventGranularRatcheting(=false)

??
class yade.wrapper.Law2_ScGeom6D_CohFrictPhys_CohesionMoment(inherits LawFunctor →

Functor → Serializable)
Law for linear traction-compression-bending-twisting, with cohesion+friction and Mohr-Coulomb
plasticity surface. This law adds adhesion and moments to Law2_ScGeom_FrictPhys_Cundall-
Strack.
The normal force is (with the convention of positive tensile forces) Fn = min(kn ∗un, an), with an

the normal adhesion. The shear force is Fs = ks ∗us, the plasticity condition defines the maximum
value of the shear force, by default Fmax

s = Fn ∗ tan(ϕ) + as, with ϕ the friction angle and an

the shear adhesion. If CohFrictPhys::cohesionDisableFriction is True, friction is ignored as long as
adhesion is active, and the maximum shear force is only Fmax

s = as.
If the maximum tensile or maximum shear force is reached and CohFrictPhys::fragile =True (de-
fault), the cohesive link is broken, and an, as are set back to zero. If a tensile force is present,
the contact is lost, else the shear strength is Fmax

s = Fn ∗ tan(ϕ). If CohFrictPhys::fragile =False
(in course of implementation), the behaviour is perfectly plastic, and the shear strength is kept
constant.
If Law2_ScGeom6D_CohFrictPhys_CohesionMoment::momentRotationLaw =True, bending and
twisting moments are computed using a linear law with moduli respectively kt and kr (the two
values are the same currently), so that the moments are : Mb = kb ∗ Θb and Mt = kt ∗ Θt, with
Θb,t the relative rotations between interacting bodies. There is no maximum value of moments in
the current implementation, though they could be added in the future.
Creep at contact is implemented in this law, as defined in [Hassan2010]. If activated, there is a
viscous behaviour of the shear and twisting components, and the evolution of the elastic parts of
shear displacement and relative twist is given by dus,e/dt = −Fs/νs and dΘt,e/dt = −Mt/νt.

70 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

Note: Periodicity is not handled yet in this law.
always_use_moment_law(=false)

If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

creepStiffness(=1)
...

creep_viscosity(=1)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_CohFrictMat_-
CohFrictPhys...

neverErase(=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

shear_creep(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

shear_creep2(=false)
activate SLS (http://en.wikipedia.org/wiki/Standard_Linear_Solid_model) creep on the
shear force, using CohesiveFrictionalContactLaw::creep_viscosity.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep_viscosity.

useIncrementalForm(=false)
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.wrapper.Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity(inherits
Law-
Functor→ Func-
tor →
Serializ-
able)

Contact law used to simulate granulate filler in rock joints [Duriez2009a], [Duriez2010]. It includes
possibility of cohesion, moment transfer and inelastic compression behaviour (to reproduce the
normal inelasticity observed for rock joints, for the latter).
The moment transfer relation corresponds to the adaptation of the work of Plassiard & Belheine
(see in [DeghmReport2006] for example), which was realized by J. Kozicki, and is now coded in
ScGeom6D.
As others LawFunctor, it uses pre-computed data of the interactions (rigidities, friction angles
-with their tan()-, orientations of the interactions); this work is done here in Ip2_2xNormalInelas-
ticMat_NormalInelasticityPhys.
To use this you should also use NormalInelasticMat as material type of the bodies.
The effects of this law are illustrated in scripts/normalInelasticityTest.py
momentAlwaysElastic(=false)

boolean, true=> the torque (computed only if momentRotationLaw !!) is not limited by a
plastic threshold

momentRotationLaw(=true)
boolean, true=> computation of a torque (against relative rotation) exchanged between par-
ticles

class yade.wrapper.Law2_ScGeom_CFpmPhys_CohesiveFrictionalPM(inherits LawFunctor →
Functor → Serializable)

Constitutive law for the CFpm model.

1.8. Constitutive laws 71

http://en.wikipedia.org/wiki/Standard_Linear_Solid_model

Yade Reference Documentation, Release 1st edition

preventGranularRatcheting(=true)
If true rotations are computed such as granular ratcheting is prevented. See article
[Alonso2004], pg. 3-10 – and a lot more papers from the same authors).

class yade.wrapper.Law2_ScGeom_FrictPhys_CundallStrack(inherits LawFunctor → Functor→ Serializable)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(ϕ), with ϕ the friction angle.
This law is well tested in the context of triaxial simulation, and has been used for a number of
published results (see e.g. [Scholtes2009b] and other papers from the same authors). It is gener-
alised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and moments
at contact.
elasticEnergy() → float

Compute and return the total elastic energy in all “FrictPhys” contacts
initPlasticDissipation((float)arg2) → None

Initialize cummulated plastic dissipation to a value (0 by default).
neverErase(=false)

Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_CapillaryPhys_Capillarity)

plasticDissipation() → float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2_-
ScGeom_FrictPhys_CundallStrack::traceEnergy is true.

sphericalBodies(=true)
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

traceEnergy(=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

class yade.wrapper.Law2_ScGeom_MindlinPhys_HertzWithLinearShear(inherits LawFunc-
tor → Functor →
Serializable)

Constitutive law for the Hertz formulation (using MindlinPhys.kno) and linear beahvior in shear
(using MindlinPhys.kso for stiffness and FrictPhys.tangensOfFrictionAngle).
Note: No viscosity or damping. If you need those, look at Law2_ScGeom_MindlinPhys_Mindlin,
which also includes non-linear Mindlin shear.
nonLin(=0)

Shear force nonlinearity (the value determines how many features of the non-linearity are
taken in account). 1: ks as in HM 2: shearElastic increment computed as in HM 3. granular
ratcheting disabled.

class yade.wrapper.Law2_ScGeom_MindlinPhys_Mindlin(inherits LawFunctor→ Functor→ Se-
rializable)

Constitutive law for the Hertz-Mindlin formulation. It includes non linear elasticity in the normal
direction as predicted by Hertz for two non-conforming elastic contact bodies. In the shear direc-
tion, instead, it reseambles the simplified case without slip discussed in Mindlin’s paper, where a
linear relationship between shear force and tangential displacement is provided. Finally, the Mohr-
Coulomb criterion is employed to established the maximum friction force which can be developed
at the contact. Moreover, it is also possible to include the effect of linear viscous damping through
the definition of the parameters βn and βs.
calcEnergy(=false)

bool to calculate energy terms (shear potential energy, dissipation of energy due to friction

72 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

and dissipation of energy due to normal and tangential damping)
contactsAdhesive() → float

Compute total number of adhesive contacts.
frictionDissipation(=uninitalized)

Energy dissipation due to sliding
includeAdhesion(=false)

bool to include the adhesion force following the DMT formulation. If true, also the normal
elastic energy takes into account the adhesion effect.

includeMoment(=false)
bool to consider rolling resistance (if Ip2_FrictMat_FrictMat_MindlinPhys::eta is 0.0, no
plastic condition is applied.)

normDampDissip(=uninitalized)
Energy dissipated by normal damping

normElastEnergy() → float
Compute normal elastic potential energy. It handles the DMT formulation if Law2_ScGeom_-
MindlinPhys_Mindlin::includeAdhesion is set to true.

preventGranularRatcheting(=true)
bool to avoid granular ratcheting

ratioSlidingContacts() → float
Return the ratio between the number of contacts sliding to the total number at a given time.

shearDampDissip(=uninitalized)
Energy dissipated by tangential damping

shearEnergy(=uninitalized)
Shear elastic potential energy

class yade.wrapper.Law2_ScGeom_MindlinPhys_MindlinDeresiewitz(inherits LawFunctor →
Functor → Serializable)

Hertz-Mindlin contact law with partial slip solution, as described in [Thornton1991].
class yade.wrapper.Law2_ScGeom_ViscElPhys_Basic(inherits LawFunctor → Functor → Seri-

alizable)
Linear viscoelastic model operating on ScGeom and ViscElPhys.

class yade.wrapper.Law2_ScGeom_ViscoFrictPhys_CundallStrack(inherits Law2_ScGeom_-
FrictPhys_CundallStrack→ LawFunctor → Functor→ Serializable)

Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-
ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) Fn = min(knun, 0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
Fmax
s = Fn tan(ϕ), with ϕ the friction angle.
This law is well tested in the context of triaxial simulation, and has been used for a number of
published results (see e.g. [Scholtes2009b] and other papers from the same authors). It is gener-
alised by Law2_ScGeom6D_CohFrictPhys_CohesionMoment, which adds cohesion and moments
at contact.
creepStiffness(=1)
shearCreep(=false)
viscosity(=1)

class yade.wrapper.Law2_ScGeom_WirePhys_WirePM(inherits LawFunctor → Functor → Serial-
izable)

Constitutive law for the wire model.
linkThresholdIteration(=1)

Iteration to create the link.

1.8. Constitutive laws 73

Yade Reference Documentation, Release 1st edition

1.8.2 LawDispatcher

class yade.wrapper.LawDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).
dispFunctor((IGeom)arg2, (IPhys)arg3) → LawFunctor

Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

1.9 Callbacks

IntrCallback SumIntrForcesCb

class yade.wrapper.IntrCallback(inherits Serializable)
Abstract callback object which will be called for every (real) Interaction after the interaction has
been processed by InteractionLoop.
At the beginning of the interaction loop, stepInit is called, initializing the object; it returns either
NULL (to deactivate the callback during this time step) or pointer to function, which will then be
passed (1) pointer to the callback object itself and (2) pointer to Interaction.
Note: (NOT YET DONE) This functionality is accessible from python by passing 4th argument
to InteractionLoop constructor, or by appending the callback object to InteractionLoop::callbacks.

class yade.wrapper.SumIntrForcesCb(inherits IntrCallback → Serializable)
Callback summing magnitudes of forces over all interactions. IPhys of interactions must derive
from NormShearPhys (responsability fo the user).

1.10 Preprocessors

FileGenerator

CapillaryTriaxialTes t

Cohes iveTriaxialTes t

SimpleShear

TriaxialTest

class yade.wrapper.FileGenerator(inherits Serializable)
Base class for scene generators, preprocessors.
generate((str)out) → None

Generate scene, save to given file

74 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

load() → None
Generate scene, save to temporary file and load immediately

class yade.wrapper.CapillaryTriaxialTest(inherits FileGenerator → Serializable)
This preprocessor is a variant of TriaxialTest, including the model of capillary forces developed
as part of the PhD of Luc Scholtès. See the documentation of Law2_ScGeom_CapillaryPhys_-
Capillarity or the main page https://yade-dem.org/wiki/CapillaryTriaxialTest, for more details.
Results obtained with this preprocessor were reported for instance in ‘Scholtes et al. Microme-
chanics of granular materials with capillary effects. International Journal of Engineering Science
2009,(47)1, 64-75.’
CapillaryPressure(=0)

Define succion in the packing [Pa]. This is the value used in the capillary model.
Key(=”“)

A code that is added to output filenames.
Rdispersion(=0.3)

Normalized standard deviation of generated sizes.
StabilityCriterion(=0.01)

Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(=”./WallStressesWater”+Key)
autoCompressionActivation(=true)

Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload(=true)
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

biaxial2dTest(=false)
FIXME : what is that?

binaryFusion(=true)
Defines how overlapping bridges affect the capillary forces (see CapillaryTriaxial-
Test::fusionDetection). If binary=true, the force is null as soon as there is an overlap detected,
if not, the force is divided by the number of overlaps.

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxWalls(=true)
Use boxes for boundaries (recommended).

boxYoungModulus(=15000000.0)
Stiffness of boxes.

capillaryStressRecordFile(=”./capStresses”+Key)
compactionFrictionDeg(=sphereFrictionDeg)

Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

contactStressRecordFile(=”./contStresses”+Key)
dampingForce(=0.2)

Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

1.10. Preprocessors 75

https://yade-dem.org/wiki/CapillaryTriaxialTest

Yade Reference Documentation, Release 1st edition

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

defaultDt(=0.0001)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density(=2600)
density of spheres

facetWalls(=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims(=”“)
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

fixedPoroCompaction(=false)
flag to choose an isotropic compaction until a fixed porosity choosing a same translation speed
for the six walls

fixedPorosity(=1)
FIXME : what is that?

fusionDetection(=false)
test overlaps between liquid bridges on modify forces if overlaps exist

importFilename(=”“)
File with positions and sizes of spheres.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

lowerCorner(=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles(=false)
Do not create any files during run (.xml, .spheres, wall stress records)

numberOfGrains(=400)
Number of generated spheres.

radiusControlInterval(=10)
interval between size changes when growing spheres.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

recordIntervalIter(=20)
interval between file outputs

sigmaIsoCompaction(=50000)
Confining stress during isotropic compaction.

sigmaLateralConfinement(=50000)
Lateral stress during triaxial loading. An isotropic unloading is performed if the value is not
equal to CapillaryTriaxialTest::SigmaIsoCompaction.

76 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus(=15000000.0)
Stiffness of spheres.

strainRate(=1)
Strain rate in triaxial loading.

thickness(=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepOutputInterval(=50)
interval for outputing general information on the simulation (stress,unbalanced force,...)

timeStepUpdateInterval(=50)
interval for GlobalStiffnessTimeStepper

upperCorner(=Vector3r(1, 1, 1))
Upper corner of the box.

wallOversizeFactor(=1.3)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval(=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls(=false)
Use walls for boundaries (not tested)

water(=true)
activate capillary model

class yade.wrapper.CohesiveTriaxialTest(inherits FileGenerator → Serializable)
This preprocessor is a variant of TriaxialTest using the cohesive-frictional contact law with mo-
ments. It sets up a scene for cohesive triaxial tests. See full documentation at http://yade-
dem.org/wiki/TriaxialTest.
Cohesion is initially 0 by default. The suggested usage is to define cohesion values in a second step,
after isotropic compaction : define shear and normal cohesions in Ip2_CohFrictMat_CohFrict-
Mat_CohFrictPhys, then turn Ip2_CohFrictMat_CohFrictMat_CohFrictPhys::setCohesionNow
true to assign them at each contact at next iteration.
Key(=”“)

A code that is added to output filenames.
StabilityCriterion(=0.01)

Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(=”./CohesiveWallStresses”+Key)
autoCompressionActivation(=true)

Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload(=true)
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

1.10. Preprocessors 77

http://yade-dem.org/wiki/TriaxialTest
http://yade-dem.org/wiki/TriaxialTest

Yade Reference Documentation, Release 1st edition

biaxial2dTest(=false)
FIXME : what is that?

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxWalls(=true)
Use boxes for boundaries (recommended).

boxYoungModulus(=15000000.0)
Stiffness of boxes.

compactionFrictionDeg(=sphereFrictionDeg)
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

dampingForce(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

defaultDt(=0.001)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density(=2600)
density of spheres

facetWalls(=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims(=”“)
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

fixedPoroCompaction(=false)
flag to choose an isotropic compaction until a fixed porosity choosing a same translation speed
for the six walls

fixedPorosity(=1)
FIXME : what is that?

importFilename(=”“)
File with positions and sizes of spheres.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

lowerCorner(=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles(=false)
Do not create any files during run (.xml, .spheres, wall stress records)

normalCohesion(=0)
Material parameter used to define contact strength in tension.

78 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

numberOfGrains(=400)
Number of generated spheres.

radiusControlInterval(=10)
interval between size changes when growing spheres.

radiusDeviation(=0.3)
Normalized standard deviation of generated sizes.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

recordIntervalIter(=20)
interval between file outputs

setCohesionOnNewContacts(=false)
create cohesionless (False) or cohesive (True) interactions for new contacts.

shearCohesion(=0)
Material parameter used to define shear strength of contacts.

sigmaIsoCompaction(=50000)
Confining stress during isotropic compaction.

sigmaLateralConfinement(=50000)
Lateral stress during triaxial loading. An isotropic unloading is performed if the value is not
equal to TriaxialTest::sigmaIsoCompaction.

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus(=15000000.0)
Stiffness of spheres.

strainRate(=0.1)
Strain rate in triaxial loading.

thickness(=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepUpdateInterval(=50)
interval for GlobalStiffnessTimeStepper

upperCorner(=Vector3r(1, 1, 1))
Upper corner of the box.

wallOversizeFactor(=1.3)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval(=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls(=false)
Use walls for boundaries (not tested)

class yade.wrapper.SimpleShear(inherits FileGenerator → Serializable)
Preprocessor for creating a numerical model of a simple shear box.

•Boxes (6) constitute the different sides of the box itself
•Spheres are contained in the box. The sample could be generated via the same method used in
TriaxialTest Preprocesor (=> see GenerateCloud) or by reading a text file containing positions
and radii of a sample (=> see ImportCloud). This last one is the one by default used by this
PreProcessor as it is written here => you need to have such a file.

1.10. Preprocessors 79

Yade Reference Documentation, Release 1st edition

Thanks to the Engines (in pkg/common/Engine/PartialEngine) KinemCNDEngine,
KinemCNSEngine and KinemCNLEngine, respectively constant normal displacement,
constant normal rigidity and constant normal stress are possible to execute over such
samples.

NB about micro-parameters : their values correspond to those used in [Duriez2009a].
boxPoissonRatio(=0.04)

value of ElastMat::poisson for the spheres [-]
boxYoungModulus(=4.0e9)

value of ElastMat::young for the boxes [Pa]
density(=2600)

density of the spheres [kg/m3]
filename(=”../porosite0_44.txt”)

file with the list of spheres centers and radii
gravApplied(=false)

depending on this, GravityEngine is added or not to the scene to take into account the weight
of particles

gravity(=Vector3r(0, -9.81, 0))
vector corresponding to used gravity [m/s2]

height(=0.02)
initial height (along y-axis) of the shear box [m]

length(=0.1)
initial length (along x-axis) of the shear box [m]

sphereFrictionDeg(=37)
value of ElastMat::poisson for the spheres [◦] (the necessary conversion in rad is done auto-
matically)

spherePoissonRatio(=0.04)
value of ElastMat::poisson for the spheres [-]

sphereYoungModulus(=4.0e9)
value of ElastMat::young for the spheres [Pa]

thickness(=0.001)
thickness of the boxes constituting the shear box [m]

timeStepUpdateInterval(=50)
value of TimeStepper::timeStepUpdateInterval for the TimeStepper used here

width(=0.04)
initial width (along z-axis) of the shear box [m]

class yade.wrapper.TriaxialTest(inherits FileGenerator → Serializable)
Create a scene for triaxal test.
Introduction Yade includes tools to simulate triaxial tests on particles assemblies. This pre-

processor (and variants like e.g. CapillaryTriaxialTest) illustrate how to use them. It generates
a scene which will - by default - go through the following steps :
• generate random loose packings in a parallelepiped.
• compress the packing isotropicaly, either squeezing the packing between moving rigid

boxes or expanding the particles while boxes are fixed (depending on flag internalCom-
paction). The confining pressure in this stage is defined via sigmaIsoCompaction.

• when the packing is dense and stable, simulate a loading path and get the mechanical
response as a result.

The default loading path corresponds to a constant lateral stress (sigmaLateralConfinement)
in 2 directions and constant strain rate on the third direction. This default loading path is

80 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

performed when the flag autoCompressionActivation it True, otherwise the simulation stops
after isotropic compression.
Different loading paths might be performed. In order to define them, the user can modify
the flags found in engine TriaxialStressController at any point in the simulation (in c++).
If TriaxialStressController.wall_X_activated is true boundary X is moved automati-
cally to maintain the defined stress level sigmaN (see axis conventions below). If false the
boundary is not controlled by the engine at all. In that case the user is free to prescribe fixed
position, constant velocity, or more complex conditions.
Note: Axis conventions. Boundaries perpendicular to the x axis are called “left” and “right”,
y corresponds to “top” and “bottom”, and axis z to “front” and “back”. In the default loading
path, strain rate is assigned along y, and constant stresses are assigned on x and z.

Essential engines
1. The TrixaialCompressionEngine is used for controlling the state of the sample and simu-

lating loading paths. TriaxialCompressionEngine inherits from TriaxialStressController,
which computes stress- and strain-like quantities in the packing and maintain a constant
level of stress at each boundary. TriaxialCompressionEngine has few more members in
order to impose constant strain rate and control the transition between isotropic com-
pression and triaxial test. Transitions are defined by changing some flags of the Triaxial-
StressController, switching from/to imposed strain rate to/from imposed stress.

2. The class TriaxialStateRecorder is used to write to a file the history of stresses and strains.
3. TriaxialTest is using GlobalStiffnessTimeStepper to compute an appropriate ∆t for the

numerical scheme.
Note: TriaxialStressController::ComputeUnbalancedForce returns a value that can
be useful for evaluating the stability of the packing. It is defined as (mean force on parti-
cles)/(mean contact force), so that it tends to 0 in a stable packing. This parameter is checked
by TriaxialCompressionEngine to switch from one stage of the simulation to the next one (e.g.
stop isotropic confinment and start axial loading)

Frequently Asked Questions
1.How is generated the packing? How to change particles sizes distribution? Why do I have a message “Exceeded 3000 tries to insert non-overlapping sphere?

The initial positioning of spheres is done by generating random (x,y,z) in a box and
checking if a sphere of radius R (R also randomly generated with respect to a uniform
distribution between mean*(1-std_dev) and mean*(1+std_dev) can be inserted at this
location without overlaping with others.
If the sphere overlaps, new (x,y,z)’s are generated until a free position for the new sphere is
found. This explains the message you have: after 3000 trial-and-error, the sphere couldn’t
be placed, and the algorithm stops.
You get the message above if you try to generate an initialy dense packing, which is not
possible with this algorithm. It can only generate clouds. You should keep the default
value of porosity (n~0.7), or even increase if it is still to low in some cases. The dense
state will be obtained in the second step (compaction, see below).

2.How is the compaction done, what are the parameters maxWallVelocity and finalMaxMultiplier?

Compaction is done
(a) by moving rigid boxes or
(b) by increasing the sizes of the particles (decided using the option internalCompaction

� size increase).
Both algorithm needs numerical parameters to prevent instabilities. For instance, with
the method (1) maxWallVelocity is the maximum wall velocity, with method (2) final-
MaxMultiplier is the max value of the multiplier applied on sizes at each iteration (always
something like 1.00001).

1.10. Preprocessors 81

Yade Reference Documentation, Release 1st edition

3.During the simulation of triaxial compression test, the wall in one direction moves with an increment of strain while the stresses in other two directions are adjusted to sigma_iso. How the stresses in other directions are maintained constant to sigma_iso? What is the mechanism? Where is it implemented in Yade?
The control of stress on a boundary is based on the total stiffness K of all contacts
between the packing and this boundary. In short, at each step, displacement=stress_-
error/K. This algorithm is implemented in TriaxialStressController, and the control
itself is in TriaxialStressController::ControlExternalStress. The control can
be turned off independently for each boundary, using the flags wall_XXX_activated,
with XXX�{top, bottom, left, right, back, front}. The imposed sress is a unique value
(sigma_iso) for all directions if TriaxialStressController.isAxisymetric, or 3 independent
values sigma1, sigma2, sigma3.

4.Which value of friction angle do you use during the compaction phase of the Triaxial Test?
The friction during the compaction (whether you are using the expansion method or
the compression one for the specimen generation) can be anything between 0 and the
final value used during the Triaxial phase. Note that higher friction than the final one
would result in volumetric collapse at the beginning of the test. The purpose of using a
different value of friction during this phase is related to the fact that the final porosity
you get at the end of the sample generation essentially depends on it as well as on the
assumed Particle Size Distribution. Changing the initial value of friction will get to a
different value of the final porosity.

5.Which is the aim of the bool isRadiusControlIteration? This internal variable (up-
dated automatically) is true each N timesteps (with N=radiusControlInterval). For other
timesteps, there is no expansion. Cycling without expanding is just a way to speed up the
simulation, based on the idea that 1% increase each 10 iterations needs less operations
than 0.1% at each iteration, but will give similar results.

6.How comes the unbalanced force reaches a low value only after many timesteps in the compaction phase?
The value of unbalanced force (dimensionless) is expected to reach low value (i.e. identi-
fying a static-equilibrium condition for the specimen) only at the end of the compaction
phase. The code is not aiming at simulating a quasistatic isotropic compaction process,
it is only giving a stable packing at the end of it.

Key(=”“)
A code that is added to output filenames.

StabilityCriterion(=0.01)
Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(=”./WallStresses”+Key)
autoCompressionActivation(=true)

Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload(=true)
auto adjust the isotropic stress state from TriaxialTest::sigmaIsoCompaction to Triaxial-
Test::sigmaLateralConfinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

biaxial2dTest(=false)
FIXME : what is that?

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxYoungModulus(=15000000.0)
Stiffness of boxes.

82 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

compactionFrictionDeg(=sphereFrictionDeg)
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

dampingForce(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

defaultDt(=-1)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density(=2600)
density of spheres

facetWalls(=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims(=”“)
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_radius is prescribed: scaling will be applied on the
rest.

importFilename(=”“)
File with positions and sizes of spheres.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

lowerCorner(=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles(=false)
Do not create any files during run (.xml, .spheres, wall stress records)

numberOfGrains(=400)
Number of generated spheres.

radiusControlInterval(=10)
interval between size changes when growing spheres.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

radiusStdDev(=0.3)
Normalized standard deviation of generated sizes.

recordIntervalIter(=20)
interval between file outputs

sigmaIsoCompaction(=50000)
Confining stress during isotropic compaction.

sigmaLateralConfinement(=50000)
Lateral stress during triaxial loading. An isotropic unloading is performed if the value is not
equal to TriaxialTest::sigmaIsoCompaction.

1.10. Preprocessors 83

Yade Reference Documentation, Release 1st edition

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus(=15000000.0)
Stiffness of spheres.

strainRate(=0.1)
Strain rate in triaxial loading.

thickness(=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepUpdateInterval(=50)
interval for GlobalStiffnessTimeStepper

upperCorner(=Vector3r(1, 1, 1))
Upper corner of the box.

wallOversizeFactor(=1.3)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval(=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls(=false)
Use walls for boundaries (not tested)

1.11 Rendering

1.11.1 OpenGLRenderer

class yade.wrapper.OpenGLRenderer(inherits Serializable)
Class responsible for rendering scene on OpenGL devices.
bgColor(=Vector3r(.2, .2, .2))

Color of the background canvas (RGB)
bound(=false)

Render body Bound
clipPlaneActive(=vector<bool>(numClipPlanes, false))

Activate/deactivate respective clipping planes
clipPlaneSe3(=vector<Se3r>(numClipPlanes, Se3r(Vector3r::Zero(), Quater-

nionr::Identity())))
Position and orientation of clipping planes

dispScale(=Vector3r::Ones(), disable scaling)
Artificially enlarge (scale) dispalcements from bodies’ reference positions by this relative
amount, so that they become better visible (independently in 3 dimensions). Disbled if (1,1,1).

dof(=false)
Show which degrees of freedom are blocked for each body

extraDrawers(=uninitalized)
Additional rendering components (GlExtraDrawer).

ghosts(=true)
Render objects crossing periodic cell edges by cloning them in multiple places (periodic sim-
ulations only).

id(=false)
Show body id’s

84 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

intrAllWire(=false)
Draw wire for all interactions, blue for potential and green for real ones (mostly for debugging)

intrGeom(=false)
Render Interaction::geom objects.

intrPhys(=false)
Render Interaction::phys objects

intrWire(=false)
If rendering interactions, use only wires to represent them.

light1(=true)
Turn light 1 on.

light2(=true)
Turn light 2 on.

light2Color(=Vector3r(0.5, 0.5, 0.1))
Per-color intensity of secondary light (RGB).

light2Pos(=Vector3r(-130, 75, 30))
Position of secondary OpenGL light source in the scene.

lightColor(=Vector3r(0.6, 0.6, 0.6))
Per-color intensity of primary light (RGB).

lightPos(=Vector3r(75, 130, 0))
Position of OpenGL light source in the scene.

mask(=~0, draw everything)
Bitmask for showing only bodies where ((mask & Body::mask)!=0)

render() → None
Render the scene in the current OpenGL context.

rotScale(=1., disable scaling)
Artificially enlarge (scale) rotations of bodies relative to their reference orientation, so the
they are better visible.

selId(=Body::ID_NONE)
Id of particle that was selected by the user.

setRefSe3() → None
Make current positions and orientation reference for scaleDisplacements and scaleRotations.

shape(=true)
Render body Shape

wire(=false)
Render all bodies with wire only (faster)

1.11. Rendering 85

Yade Reference Documentation, Release 1st edition

1.11.2 GlShapeFunctor

GlShapeFunctor

Gl1_Sphere

Gl1_Tetra

Gl1_Wall

Gl1_Facet

Gl1_Box

Gl1_ChainedCylinderGl1_Cylinder

class yade.wrapper.GlShapeFunctor(inherits Functor → Serializable)
Abstract functor for rendering Shape objects.

class yade.wrapper.Gl1_Box(inherits GlShapeFunctor → Functor → Serializable)
Renders Box object

class yade.wrapper.Gl1_ChainedCylinder(inherits Gl1_Cylinder → GlShapeFunctor → Func-
tor → Serializable)

Renders ChainedCylinder object including a shift for compensating flexion.
class yade.wrapper.Gl1_Cylinder(inherits GlShapeFunctor → Functor → Serializable)

Renders Cylinder object
wire(=false [static])

Only show wireframe (controlled by glutSlices and glutStacks.
glutNormalize(=true [static])

Fix normals for non-wire rendering
glutSlices(=8 [static])

Number of sphere slices.
glutStacks(=4 [static])

Number of sphere stacks.
class yade.wrapper.Gl1_Facet(inherits GlShapeFunctor → Functor → Serializable)

Renders Facet object
normals(=false [static])

In wire mode, render normals of facets and edges; facet’s colors are disregarded in that case.
class yade.wrapper.Gl1_Sphere(inherits GlShapeFunctor → Functor → Serializable)

Renders Sphere object
quality(=1.0 [static])

Change discretization level of spheres. quality>1 for better image quality, at the price
of more cpu/gpu usage, 0<quality<1 for faster rendering. If mono-color sphres are dis-
played (Gl1_Sphere::stripes=False), quality mutiplies :yref:‘Gl1_Sphere::glutSlices and Gl1_-
Sphere::glutStacks. If striped spheres are displayed (:yref:‘Gl1_Sphere::stripes=True), only
integer increments are meaningfull : quality=1 and quality=1.9 will give the same result,
quality=2 will give finer result.

86 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

wire(=false [static])
Only show wireframe (controlled by glutSlices and glutStacks.

stripes(=false [static])
In non-wire rendering, show stripes clearly showing particle rotation.

localSpecView(=true [static])
Compute specular light in local eye coordinate system.

glutSlices(=12 [static])
Base number of sphere slices, multiplied by Gl1_Sphere::quality before use); not used with
stripes (see glut{Solid,Wire}Sphere reference)

glutStacks(=6 [static])
Base number of sphere stacks, multiplied by Gl1_Sphere::quality before use; not used with
stripes (see glut{Solid,Wire}Sphere reference)

class yade.wrapper.Gl1_Tetra(inherits GlShapeFunctor → Functor → Serializable)
Renders Tetra object

class yade.wrapper.Gl1_Wall(inherits GlShapeFunctor → Functor → Serializable)
Renders Wall object
div(=20 [static])

Number of divisions of the wall inside visible scene part.

1.11.3 GlStateFunctor

class yade.wrapper.GlStateFunctor(inherits Functor → Serializable)
Abstract functor for rendering State objects.

1.11.4 GlBoundFunctor

GlBoundFunctor Gl1_Aabb

class yade.wrapper.GlBoundFunctor(inherits Functor → Serializable)
Abstract functor for rendering Bound objects.

class yade.wrapper.Gl1_Aabb(inherits GlBoundFunctor → Functor → Serializable)
Render Axis-aligned bounding box (Aabb).

1.11.5 GlIGeomFunctor

GlIGeomFunctor

Gl1_L6GeomGl1_L3Geom

Gl1_Dem3DofGeom_SphereSphere

Gl1_Dem3DofGeom_FacetSphere

Gl1_Dem3DofGeom_WallSphere

1.11. Rendering 87

http://www.opengl.org/documentation/specs/glut/spec3/node81.html
http://www.opengl.org/documentation/specs/glut/spec3/node81.html

Yade Reference Documentation, Release 1st edition

class yade.wrapper.GlIGeomFunctor(inherits Functor → Serializable)
Abstract functor for rendering IGeom objects.

class yade.wrapper.Gl1_Dem3DofGeom_FacetSphere(inherits GlIGeomFunctor → Functor →
Serializable)

Render interaction of facet and sphere (represented by Dem3DofGeom_FacetSphere)
normal(=false [static])

Render interaction normal
rolledPoints(=false [static])

Render points rolled on the sphere & facet (original contact point)
unrolledPoints(=false [static])

Render original contact points unrolled to the contact plane
shear(=false [static])

Render shear line in the contact plane
shearLabel(=false [static])

Render shear magnitude as number
class yade.wrapper.Gl1_Dem3DofGeom_SphereSphere(inherits GlIGeomFunctor → Functor →

Serializable)
Render interaction of 2 spheres (represented by Dem3DofGeom_SphereSphere)
normal(=false [static])

Render interaction normal
rolledPoints(=false [static])

Render points rolled on the spheres (tracks the original contact point)
unrolledPoints(=false [static])

Render original contact points unrolled to the contact plane
shear(=false [static])

Render shear line in the contact plane
shearLabel(=false [static])

Render shear magnitude as number
class yade.wrapper.Gl1_Dem3DofGeom_WallSphere(inherits GlIGeomFunctor → Functor → Se-

rializable)
Render interaction of wall and sphere (represented by Dem3DofGeom_WallSphere)
normal(=false [static])

Render interaction normal
rolledPoints(=false [static])

Render points rolled on the spheres (tracks the original contact point)
unrolledPoints(=false [static])

Render original contact points unrolled to the contact plane
shear(=false [static])

Render shear line in the contact plane
shearLabel(=false [static])

Render shear magnitude as number
class yade.wrapper.Gl1_L3Geom(inherits GlIGeomFunctor → Functor → Serializable)

Render L3Geom geometry.
axesLabels(=false [static])

Whether to display labels for local axes (x,y,z)
axesScale(=1. [static])

Scale local axes, their reference length being half of the minimum radius.
axesWd(=1. [static])

Width of axes lines, in pixels; not drawn if non-positive

88 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

uPhiWd(=2. [static])
Width of lines for drawing displacements (and rotations for L6Geom); not drawn if non-
positive.

uScale(=1. [static])
Scale local displacements (u - u0); 1 means the true scale, 0 disables drawing local displace-
ments; negative values are permissible.

class yade.wrapper.Gl1_L6Geom(inherits Gl1_L3Geom → GlIGeomFunctor → Functor → Seri-
alizable)

Render L6Geom geometry.
phiScale(=1. [static])

Scale local rotations (phi - phi0). The default scale is to draw π rotation with length equal
to minimum radius.

1.11.6 GlIPhysFunctor

GlIPhysFunctor

Gl1_CpmPhys

Gl1_NormPhys

class yade.wrapper.GlIPhysFunctor(inherits Functor → Serializable)
Abstract functor for rendering IPhys objects.

class yade.wrapper.Gl1_CpmPhys(inherits GlIPhysFunctor → Functor → Serializable)
Render CpmPhys objects of interactions.
contactLine(=true [static])

Show contact line
dmgLabel(=true [static])

Numerically show contact damage parameter
dmgPlane(=false [static])

[what is this?]
epsT(=false [static])

Show shear strain
epsTAxes(=false [static])

Show axes of shear plane
normal(=false [static])

Show contact normal
colorStrainRatio(=-1 [static])

If positive, set the interaction (wire) color based on εN normalized by ε0 × colorStrainRatio
(ε0=:yref:CpmPhys.epsCrackOnset). Otherwise, color based on the residual strength.

epsNLabel(=false [static])
Numerically show normal strain

class yade.wrapper.Gl1_NormPhys(inherits GlIPhysFunctor → Functor → Serializable)
Renders NormPhys objects as cylinders of which diameter and color depends on Norm-
Phys:normForce magnitude.
maxFn(=0 [static])

Value of NormPhys.normalForce corresponding to maxDiameter. This value will be increased
(but not decreased) automatically.

1.11. Rendering 89

Yade Reference Documentation, Release 1st edition

signFilter(=0 [static])
If non-zero, only display contacts with negative (-1) or positive (+1) normal forces; if zero,
all contacts will be displayed.

refRadius(=std::numeric_limits<Real>::infinity() [static])
Reference (minimum) particle radius; used only if maxRadius is negative. This value will be
decreased (but not increased) automatically. (auto-updated)

maxRadius(=-1 [static])
Cylinder radius corresponding to the maximum normal force. If negative, auto-updated re-
fRadius will be used instead.

slices(=6 [static])
Number of sphere slices; (see glutCylinder reference)

stacks(=1 [static])
Number of sphere stacks; (see glutCylinder reference)

maxWeakFn(=NaN [static])
Value that divides contacts by their normal force into the ‘‘weak fabric” and ‘‘strong fabric’‘.
This value is set as side-effect by utils.fabricTensor.

weakFilter(=0 [static])
If non-zero, only display contacts belonging to the ‘‘weak” (-1) or ‘‘strong” (+1) fabric.

weakScale(=1. [static])
If maxWeakFn is set, scale radius of the weak fabric by this amount (usually smaller than 1).
If zero, 1 pixel line is displayed. Colors are not affected by this value.

1.12 Simulation data

1.12.1 Omega

class yade.wrapper.Omega

bodies
Bodies in the current simulation (container supporting index access by id and iteration)

cell
Periodic cell of the current scene (None if the scene is aperiodic).

childClassesNonrecursive((str)arg2) → list
Return list of all classes deriving from given class, as registered in the class factory

disableGdb() → None
Revert SEGV and ABRT handlers to system defaults.

dt
Current timestep (∆t) value.

•assigning negative value enables dynamic ∆t (by looking for a TimeStepper in O.engine)
and sets positive timestep O.dt=|∆t| (will be used until the timestepper is run and
updates it)

•assigning positive value sets ∆t to that value and disables dynamic ∆t (via TimeStepper,
if there is one).

dynDt can be used to query whether dynamic ∆t is in use.
dynDt

Whether a TimeStepper is used for dynamic ∆t control. See dt on how to enable/disable
TimeStepper.

dynDtAvailable
Whether a TimeStepper is amongst O.engines, activated or not.

90 Chapter 1. Class reference (yade.wrapper module)

http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml
http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml

Yade Reference Documentation, Release 1st edition

energy
EnergyTracker of the current simulation. (meaningful only with O.trackEnergy)

engines
List of engines in the simulation (Scene::engines).

exitNoBacktrace([(int)status=0]) → None
Disable SEGV handler and exit, optionally with given status number.

filename
Filename under which the current simulation was saved (None if never saved).

forceSyncCount
Counter for number of syncs in ForceContainer, for profiling purposes.

forces
ForceContainer (forces, torques, displacements) in the current simulation.

interactions
Interactions in the current simulation (container supporting index acces by either (id1,id2) or
interactionNumber and iteration)

isChildClassOf((str)arg2, (str)arg3) → bool
Tells whether the first class derives from the second one (both given as strings).

iter
Get current step number

labeledEngine((str)arg2) → object
Return instance of engine/functor with the given label. This function shouldn’t be called
by the user directly; every ehange in O.engines will assign respective global python variables
according to labels.
For example:: O.engines=[InsertionSortCollider(label=’collider’)] collider.nBins=5 ## col-
lider has become a variable after assignment to O.engines automatically)

load((str)file[, (bool)quiet=False]) → None
Load simulation from file.

loadTmp([(str)mark=’‘[, (bool)quiet=False]]) → None
Load simulation previously stored in memory by saveTmp. mark optionally distinguishes
multiple saved simulations

lsTmp() → list
Return list of all memory-saved simulations.

materials
Shared materials; they can be accessed by id or by label

miscParams
MiscParams in the simulation (Scene::mistParams), usually used to save serializables that
don’t fit anywhere else, like GL functors

numThreads
Get maximum number of threads openMP can use.

pause() → None
Stop simulation execution. (May be called from within the loop, and it will stop after the
current step).

periodic
Get/set whether the scene is periodic or not (True/False).

plugins() → list
Return list of all plugins registered in the class factory.

realtime
Return clock (human world) time the simulation has been running.

1.12. Simulation data 91

Yade Reference Documentation, Release 1st edition

reload([(bool)quiet=False]) → None
Reload current simulation

reset() → None
Reset simulations completely (including another scene!).

resetThisScene() → None
Reset current scene.

resetTime() → None
Reset simulation time: step number, virtual and real time. (Doesn’t touch anything else,
including timings).

run([(int)nSteps=-1[, (bool)wait=False]]) → None
Run the simulation. nSteps how many steps to run, then stop (if positive); wait will cause
not returning to python until simulation will have stopped.

runEngine((Engine)arg2) → None
Run given engine exactly once; simulation time, step number etc. will not be incremented
(use only if you know what you do).

running
Whether background thread is currently running a simulation.

save((str)file[, (bool)quiet=False]) → None
Save current simulation to file (should be .xml or .xml.bz2)

saveTmp([(str)mark=’‘[, (bool)quiet=False]]) → None
Save simulation to memory (disappears at shutdown), can be loaded later with loadTmp.
mark optionally distinguishes different memory-saved simulations.

step() → None
Advance the simulation by one step. Returns after the step will have finished.

stopAtIter
Get/set number of iteration after which the simulation will stop.

subStep
Get the current subStep number (only meaningful if O.subStepping==True); -1 when out-
side the loop, otherwise either 0 (O.subStepping==False) or number of engine to be run
(O.subStepping==True)

subStepping
Get/set whether subStepping is active.

switchScene() → None
Switch to alternative simulation (while keeping the old one). Calling the function again
switches back to the first one. Note that most variables from the first simulation will still
refer to the first simulation even after the switch (e.g. b=O.bodies[4]; O.switchScene(); [b still
refers to the body in the first simulation here])

tags
Tags (string=string dictionary) of the current simulation (container supporting string-index
access/assignment)

time
Return virtual (model world) time of the simulation.

timingEnabled
Globally enable/disable timing services (see documentation of the timing module).

tmpFilename() → str
Return unique name of file in temporary directory which will be deleted when yade exits.

tmpToFile((str)fileName[, (str)mark=’‘]) → None
Save XML of saveTmp‘d simulation into fileName.

92 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

tmpToString([(str)mark=’‘]) → str
Return XML of saveTmp‘d simulation as string.

trackEnergy
When energy tracking is enabled or disabled in this simulation.

wait() → None
Don’t return until the simulation will have been paused. (Returns immediately if not running).

1.12.2 BodyContainer

class yade.wrapper.BodyContainer

__init__((BodyContainer)arg2) → None
append((Body)arg2) → int

Append one Body instance, return its id.

append((BodyContainer)arg1, (object)arg2) → object : Append list of Body in-
stance, return list of ids

appendClumped((object)arg2) → tuple
Append given list of bodies as a clump (rigid aggregate); return list of ids.

clear() → None
Remove all bodies (interactions not checked)

clump((object)arg2) → int
Clump given bodies together (creating a rigid aggregate); returns clump id.

erase((int)arg2) → bool
Erase body with the given id; all interaction will be deleted by InteractionLoop in the next
step.

replace((object)arg2) → object

1.12.3 InteractionContainer

class yade.wrapper.InteractionContainer
Access to interactions of simulation, by using

1.id’s of both Bodies of the interactions, e.g. O.interactions[23,65]
2.iteraction over the whole container:

for i in O.interactions: print i.id1,i.id2

Note: Iteration silently skips interactions that are not real.
__init__((InteractionContainer)arg2) → None
clear() → None

Remove all interactions
countReal() → int

Return number of interactions that are “real”, i.e. they have phys and geom.
erase((int)arg2, (int)arg3) → None

Erase one interaction, given by id1, id2 (internally, requestErase is called – the interaction
might still exist as potential, if the Collider decides so).

eraseNonReal() → None
Erase all interactions that are not real .

nth((int)arg2) → Interaction
Return n-th interaction from the container (usable for picking random interaction).

1.12. Simulation data 93

Yade Reference Documentation, Release 1st edition

serializeSorted

withBody((int)arg2) → list
Return list of real interactions of given body.

withBodyAll((int)arg2) → list
Return list of all (real as well as non-real) interactions of given body.

1.12.4 ForceContainer

class yade.wrapper.ForceContainer

__init__((ForceContainer)arg2) → None
addF((int)id, (Vector3)f) → None

Apply force on body (accumulates).
addMove((int)id, (Vector3)m) → None

Apply displacement on body (accumulates).
addRot((int)id, (Vector3)r) → None

Apply rotation on body (accumulates).
addT((int)id, (Vector3)t) → None

Apply torque on body (accumulates).
f((int)id) → Vector3

Force applied on body.
m((int)id) → Vector3

Deprecated alias for t (torque).
move((int)id) → Vector3

Displacement applied on body.
rot((int)id) → Vector3

Rotation applied on body.
syncCount

Number of synchronizations of ForceContainer (cummulative); if significantly higher than
number of steps, there might be unnecessary syncs hurting performance.

t((int)id) → Vector3
Torque applied on body.

1.12.5 MaterialContainer

class yade.wrapper.MaterialContainer
Container for Materials. A material can be accessed using

1.numerical index in range(0,len(cont)), like cont[2];
2.textual label that was given to the material, like cont[’steel’]. This etails traversing all mate-
rials and should not be used frequently.

__init__((MaterialContainer)arg2) → None
append((Material)arg2) → int

Add new shared Material; changes its id and return it.

append((MaterialContainer)arg1, (object)arg2) → object : Append list of Material
instances, return list of ids.

index((str)arg2) → int
Return id of material, given its label.

94 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

1.12.6 Scene

class yade.wrapper.Scene(inherits Serializable)
Object comprising the whole simulation.
compressionNegative

Whether the convention is that compression has negative sign (set by Ig2Functor.
dt(=1e-8)

Current timestep for integration.
flags(=0)

Various flags of the scene; 1 (Scene::LOCAL_COORDS): use local coordinate system rather
than global one for per-interaction quantities (set automatically from the functor).

isPeriodic(=false)
Whether periodic boundary conditions are active.

iter(=0)
Current iteration (computational step) number

localCoords
Whether local coordianate system is used on interactions (set by Ig2Functor.

selectedBody(=-1)
Id of body that is selected by the user

stopAtIter(=0)
Iteration after which to stop the simulation.

subStep(=-1)
Number of sub-step; not to be changed directly. -1 means to run loop prologue (cell integra-
tion), 0…n-1 runs respective engines (n is number of engines), n runs epilogue (increment step
number and time.

subStepping(=false)
Whether we currently advance by one engine in every step (rather than by single run through
all engines).

tags(=uninitalized)
Arbitrary key=value associations (tags like mp3 tags: author, date, version, description etc.)

time(=0)
Simulation time (virtual time) [s]

trackEnergy(=false)
Whether energies are being traced.

1.12.7 Cell

class yade.wrapper.Cell(inherits Serializable)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.
hSize

Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported
by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

hSize0
Value of untransformed hSize, with respect to current trsf (computed as trsf<Cell.trsf>‘�¹ ×
:yref:‘hSize.

homoDeform(=3)
Deform (velGrad) the cell homothetically, by adjusting positions or velocities of particles. The
values have the following meaning: 0: no homothetic deformation, 1: set absolute particle
positions directly (when velGrad is non-zero), but without changing their velocity, 2: adjust

1.12. Simulation data 95

Yade Reference Documentation, Release 1st edition

particle velocity (only when velGrad changed) with ∆v_i=∆ �v x_i. 3: as 2, but include a
2nd order term in addition – the derivative of 1 (convective term in the velocity update).

prevVelGrad(=Matrix3r::Zero())
Velocity gradient in the previous step.

refHSize(=Matrix3r::Identity())
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-
cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the :gui:‘Reference‘ button in the UI).

refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).
Note: Modifying this value is deprecated, use setBox instead.

setBox((Vector3)arg2) → None
Set Cell shape to be rectangular, with dimensions along axes specified by given ar-
gument. Shorthand for assigning diagonal matrix with respective entries to hSize.

setBox((Cell)arg1, (float)arg2, (float)arg3, (float)arg4) → None : Set Cell shape to
be rectangular, with dimensions along x, y, z specified by arguments. Shorthand for
assigning diagonal matrix with the respective entries to hSize.

shearPt((Vector3)arg2) → Vector3
Apply shear (cell skew+rot) on the point

shearTrsf
Current skew+rot transformation (no resize)

size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
Updated automatically at every step.

trsf
Current transformation matrix of the cell, obtained from time integration of Cell.velGrad.

unshearPt((Vector3)arg2) → Vector3
Apply inverse shear on the point (removes skew+rot of the cell)

unshearTrsf
Inverse of the current skew+rot transformation (no resize)

velGrad(=Matrix3r::Zero())
Velocity gradient of the transformation; used in NewtonIntegrator. Values of velGrad accu-
mulate in trsf at every step.

volume
Current volume of the cell.

wrap((Vector3)arg2) → Vector3
Transform an arbitrary point into a point in the reference cell

wrapPt((Vector3)arg2) → Vector3
Wrap point inside the reference cell, assuming the cell has no skew+rot.

1.13 Other classes

class yade.wrapper.Engine(inherits Serializable)
Basic execution unit of simulation, called from the simulation loop (O.engines)
dead(=false)

If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

96 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label(=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

class yade.wrapper.Cell(inherits Serializable)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.
hSize

Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported
by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

hSize0
Value of untransformed hSize, with respect to current trsf (computed as trsf<Cell.trsf>‘�¹ ×
:yref:‘hSize.

homoDeform(=3)
Deform (velGrad) the cell homothetically, by adjusting positions or velocities of particles. The
values have the following meaning: 0: no homothetic deformation, 1: set absolute particle
positions directly (when velGrad is non-zero), but without changing their velocity, 2: adjust
particle velocity (only when velGrad changed) with ∆v_i=∆ �v x_i. 3: as 2, but include a
2nd order term in addition – the derivative of 1 (convective term in the velocity update).

prevVelGrad(=Matrix3r::Zero())
Velocity gradient in the previous step.

refHSize(=Matrix3r::Identity())
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-
cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the :gui:‘Reference‘ button in the UI).

refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).
Note: Modifying this value is deprecated, use setBox instead.

setBox((Vector3)arg2) → None
Set Cell shape to be rectangular, with dimensions along axes specified by given ar-
gument. Shorthand for assigning diagonal matrix with respective entries to hSize.

setBox((Cell)arg1, (float)arg2, (float)arg3, (float)arg4) → None : Set Cell shape to
be rectangular, with dimensions along x, y, z specified by arguments. Shorthand for
assigning diagonal matrix with the respective entries to hSize.

shearPt((Vector3)arg2) → Vector3
Apply shear (cell skew+rot) on the point

shearTrsf
Current skew+rot transformation (no resize)

size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
Updated automatically at every step.

trsf
Current transformation matrix of the cell, obtained from time integration of Cell.velGrad.

1.13. Other classes 97

Yade Reference Documentation, Release 1st edition

unshearPt((Vector3)arg2) → Vector3
Apply inverse shear on the point (removes skew+rot of the cell)

unshearTrsf
Inverse of the current skew+rot transformation (no resize)

velGrad(=Matrix3r::Zero())
Velocity gradient of the transformation; used in NewtonIntegrator. Values of velGrad accu-
mulate in trsf at every step.

volume
Current volume of the cell.

wrap((Vector3)arg2) → Vector3
Transform an arbitrary point into a point in the reference cell

wrapPt((Vector3)arg2) → Vector3
Wrap point inside the reference cell, assuming the cell has no skew+rot.

class yade.wrapper.TimingDeltas

data
Get timing data as list of tuples (label, execTime[nsec], execCount) (one tuple per checkpoint)

reset() → None
Reset timing information

class yade.wrapper.GlExtraDrawer(inherits Serializable)
Performing arbitrary OpenGL drawing commands; called from OpenGLRenderer (see OpenGLRen-
derer.extraDrawers) once regular rendering routines will have finished.
This class itself does not render anything, derived classes should override the render method.
dead(=false)

Deactivate the object (on error/exception).
class yade.wrapper.GlIGeomDispatcher(inherits Dispatcher → Engine → Serializable)

Dispatcher calling functors based on received argument type(s).
dispFunctor((IGeom)arg2) → GlIGeomFunctor

Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

class yade.wrapper.ParallelEngine(inherits Engine → Serializable)
Engine for running other Engine in parallel.
__init__() → None

object __init__(tuple args, dict kwds)
__init__((list)arg2) → object : Construct from (possibly nested) list of slaves.

slaves
List of lists of Engines; each top-level group will be run in parallel with other groups, while
Engines inside each group will be run sequentially, in given order.

class yade.wrapper.GlShapeDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).
dispFunctor((Shape)arg2) → GlShapeFunctor

Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

98 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

functors
Functors associated with this dispatcher.

class yade.wrapper.Functor(inherits Serializable)
Function-like object that is called by Dispatcher, if types of arguments match those the Functor
declares to accept.
bases

Ordered list of types (as strings) this functor accepts.
label(=uninitalized)

Textual label for this object; must be valid python identifier, you can refer to it directly fron
python (must be a valid python identifier).

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

class yade.wrapper.Serializable

dict() → dict
Return dictionary of attributes.

updateAttrs((dict)arg2) → None
Update object attributes from given dictionary

class yade.wrapper.GlExtra_LawTester(inherits GlExtraDrawer → Serializable)
Find an instance of LawTester and show visually its data.
tester(=uninitalized)

Associated LawTester object.
class yade.wrapper.GlStateDispatcher(inherits Dispatcher → Engine → Serializable)

Dispatcher calling functors based on received argument type(s).
dispFunctor((State)arg2) → GlStateFunctor

Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

class yade.wrapper.MatchMaker(inherits Serializable)
Class matching pair of ids to return pre-defined (for a pair of ids defined in matches) or derived
value (computed using algo) of a scalar parameter. It can be called (id1, id2, val1=NaN, val2=NaN)
in both python and c++.
Note: There is a converter from python number defined for this class, which creates a new
MatchMaker returning the value of that number; instead of giving the object instance therefore,
you can only pass the number value and it will be converted automatically.
algo

Alogorithm used to compute value when no match for ids is found. Possible values are
•‘avg’ (arithmetic average)
•‘min’ (minimum value)
•‘max’ (maximum value)
•‘harmAvg’ (harmonic average)

The following algo algorithms do not require meaningful input values in order to work:
•‘val’ (return value specified by val)
•‘zero’ (always return 0.)

1.13. Other classes 99

Yade Reference Documentation, Release 1st edition

computeFallback((float)val1, (float)val2) → float
Compute algo value for val1 and val2, using algorithm specified by algo.

matches(=uninitalized)
Array of (id1,id2,value) items; queries matching id1 + id2 or id2 + id1 will return value

val(=NaN)
Constant value returned if there is no match and algo is val

class yade.wrapper.GlBoundDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).
dispFunctor((Bound)arg2) → GlBoundFunctor

Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

class yade.wrapper.GlIPhysDispatcher(inherits Dispatcher → Engine → Serializable)
Dispatcher calling functors based on received argument type(s).
dispFunctor((IPhys)arg2) → GlIPhysFunctor

Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names=True]) → dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

class yade.wrapper.GlExtra_OctreeCubes(inherits GlExtraDrawer → Serializable)
Render boxed read from file
boxesFile(=uninitalized)

File to read boxes from; ascii files with x0 y0 z0 x1 y1 z1 c records, where c is an integer
specifying fill (0 for wire, 1 for filled).

fillRangeDraw(=Vector2i(-2, 2))
Range of fill indices that will be rendered.

fillRangeFill(=Vector2i(2, 2))
Range of fill indices that will be filled.

levelRangeDraw(=Vector2i(-2, 2))
Range of levels that will be rendered.

noFillZero(=true)
Do not fill 0-fill boxed (those that are further subdivided)

class yade.wrapper.Dispatcher(inherits Engine → Serializable)
Engine dispatching control to its associated functors, based on types of argument it receives. This
abstract base class provides no functionality in itself.

class yade.wrapper.EnergyTracker(inherits Serializable)
Storage for tracing energies. Only to be used if O.traceEnergy is True.
clear() → None

Clear all stored values.
energies(=uninitalized)

Energy values, in linear array

100 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

items() → list
Return contents as list of (name,value) tuples.

keys() → list
Return defined energies.

total() → float
Return sum of all energies.

1.13. Other classes 101

Yade Reference Documentation, Release 1st edition

102 Chapter 1. Class reference (yade.wrapper module)

Chapter 2

Yade modules

2.1 yade.eudoxos module

Miscillaneous functions that are not believed to be generally usable, therefore kept in my “private”
module here.
They comprise notably oofem export and various CPM-related functions.
class yade.eudoxos.IntrSmooth3d

Return spatially weigted gaussian average of arbitrary quantity defined on interactions.
At construction time, all real interactions are put inside spatial grid, permitting fast search for
points in neighbourhood defined by distance.
Parameters for the distribution are standard deviation σ and relative cutoff distance relThreshold
(3 by default) which will discard points farther than relThreshold ×σ.
Given central point p0, points are weighted by gaussian function

ρ(p0, p) =
1

σ
√
2π

exp
(
−||p0 − p||2

2σ2

)
To get the averaged value, simply call the instance, passing central point and callable object which
received interaction object and returns the desired quantity:

>>> O.reset()
>>> from yade import utils
>>> O.bodies.append([utils.sphere((0,0,0),1),utils.sphere((0,0,1.9),1)])
[0, 1]
>>> O.engines=[InteractionLoop([Ig2_Sphere_Sphere_Dem3DofGeom(),],[Ip2_FrictMat_FrictMat_FrictPhys()],[])]
>>> utils.createInteraction(0,1)
<Interaction instance at 0x...>

>> is3d=IntrSmooth3d(0.003) >> is3d((0,0,0),lambda i: i.phys.normalForce) Vec-
tor3(0,0,0)

bounds()

count()

yade.eudoxos.displacementsInteractionsExport(fName)
yade.eudoxos.eliminateJumps(eps, sigma, numSteep=10, gapWidth=5, movWd=40)
yade.eudoxos.estimatePoissonYoung(principalAxis, stress=0, plot=False, cutoff=0.0)

Estimate Poisson’s ration given the “principal” axis of straining. For every base direction, homog-
enized strain is computed (slope in linear regression on discrete function particle coordinate → →
particle displacement in the same direction as returned by utils.coordsAndDisplacements) and, (if
axis ‘0’ is the strained axis) the poisson’s ratio is given as -½(ε1+ε2)/ε�.
Young’s modulus is computed as σ/ε�; if stress σ is not given (default 0), the result is 0.

103

Yade Reference Documentation, Release 1st edition

cutoff, if > 0., will take only smaller part (centered) or the specimen into account
yade.eudoxos.estimateStress(strain, cutoff=0.0)

Use summed stored energy in contacts to compute macroscopic stress over the same volume, pro-
vided known strain.

yade.eudoxos.oofemDirectExport(fileBase, title=None, negIds=[], posIds=[])
yade.eudoxos.oofemPrescribedDisplacementsExport(fileName)
yade.eudoxos.oofemTextExport(fName)

Export simulation data in text format
The format is line-oriented as follows:

E G # elastic material parameters
epsCrackOnset relDuctility xiShear transStrainCoeff # tensile parameters; epsFr=epsCrackOnset*relDuctility
cohesionT tanPhi # shear parameters
number_of_spheres number_of_links
id x y z r boundary # spheres; boundary: -1 negative, 0 none, 1 positive
…
id1 id2 cp_x cp_y cp_z A # interactions; cp = contact point; A = cross-section

yade.eudoxos.particleConfinement() → None
yade.eudoxos.velocityTowardsAxis((Vector3)axisPoint, (Vector3)axisDirection,

(float)timeToAxis[, (float)subtractDist[,
(float)perturbation]]) → None

class yade._eudoxos.HelixInteractionLocator2d
Locate all real interactions in 2d plane (reduced by spiral projection from 3d, using
Shop::spiralProject, which is the same as utils.spiralProject) using their contact points.
Note: Do not run simulation while using this object.

__init__((float)dH_dTheta[, (int)axis=0[, (float)periodStart=nan[, (float)theta0=0[,
(float)thetaMin=nan[, (float)thetaMax=nan]]]]]) → None

Parameters
• dH_dTheta (float) – Spiral inclination, i.e. height increase per 1 radian turn;
• axis (int) – axis of rotation (0=x,1=y,2=z)
• theta (float) – spiral angle at zero height (theta intercept)
• thetaMin (float) – only interactions with ϑ�thetaMin will be considered (NaN

to deactivate)
• thetaMax (float) – only interactions with ϑ�thetaMax will be considered (NaN

to deactivate)
See utils.spiralProject.

hi
Return upper corner of the rectangle containing all interactions.

intrsAroundPt((Vector2)pt2d, (float)radius) → list
Return list of interaction objects that are not further from pt2d than radius in the projection
plane

lo
Return lower corner of the rectangle containing all interactions.

macroAroundPt((Vector2)pt2d, (float)radius) → tuple
Compute macroscopic stress around given point; the interaction (n and σT are rotated to
the projection plane by ϑ (as given by utils.spiralProject) first, but no skew is applied). The

104 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

formula used is

σij =
1

V

∑
IJ

dIJAIJ

[
σN,IJnIJ

i nIJ
j +

1

2

(
σT,IJ
i nIJ

j + σT,IJ
j nIJ

i

)]
where the sum is taken over volume V containing interactions IJ between spheres I and J;

•i, j indices denote Cartesian components of vectors and tensors,
•dIJ is current distance between spheres I and J,
•AIJ is area of contact IJ,
•n is (ϑ-rotated) interaction normal (unit vector pointing from center of I to the center of
J)

•σN,IJ is normal stress (as scalar) in contact IJ,
•σT,IJ is shear stress in contact IJ in global coordinates and ϑ-rotated.

Additionally, computes average of CpmPhys.omega (ω̄) and CpmPhys.kappaD (κ̄D). N is
the number of interactions in the volume given.

Returns tuple of (N, σ, ω̄, κ̄D).
class yade._eudoxos.InteractionLocator

Locate all (real) interactions in space by their contact point. When constructed, all real interactions
are spatially indexed (uses vtkPointLocator internally). Use instance methods to use those data.
Note: Data might become inconsistent with real simulation state if simulation is being run
between creation of this object and spatial queries.
bounds

Return coordinates of lower and uppoer corner of axis-aligned abounding box of all interactions
count

Number of interactions held
intrsAroundPt((Vector3)point, (float)maxDist) → list

Return list of real interactions that are not further than maxDist from point.

macroAroundPt((Vector3)point, (float)maxDist[, (float)forceVolume=-1]) → tuple
Return tuple of averaged stress tensor (as Matrix3), average omega and average kappa values.
forceVolume can be used (if positive) rather than the sphere (with maxDist radius) volume
for the computation. (This is useful if point and maxDist encompass empty space that you
want to avoid.)

yade._eudoxos.particleConfinement() → None
yade._eudoxos.velocityTowardsAxis((Vector3)axisPoint, (Vector3)axisDirection,

(float)timeToAxis[, (float)subtractDist[,
(float)perturbation]]) → None

2.2 yade.export module

Export geometry to various formats.
class yade.export.VTKWriter

USAGE: create object vtk_writer = VTKWriter(‘base_file_name’), add to engines PyRunner with
command=’vtk_writer.snapshot()’
snapshot()

yade.export.text(filename, consider=<function <lambda> at 0x56f8c08>)
Save sphere coordinates into a text file; the format of the line is: x y z r. Non-

spherical bodies are silently skipped. Example added to examples/regular-sphere-
pack/regular-sphere-pack.py

2.2. yade.export module 105

http://www.vtk.org/doc/release/5.4/html/a01247.html

Yade Reference Documentation, Release 1st edition

Parameters
filename: string the name of the file, where sphere coordinates will be exported.
consider: anonymous function(optional)

Returns number of spheres which were written.

yade.export.textExt(filename, format=’x_y_z_r’, consider=<function <lambda> at
0x56f8a28>, comment=’‘)

Save sphere coordinates and other parameters into a text file in specific format.
Non-spherical bodies are silently skipped. Users can add here their own specific format,
giving meaningful names. The first file row will contain the format name. Be sure to add the
same format specification in ymport.textExt.

parameters

filename: string the name of the file, where sphere coordinates will be exported.
format: the name of output format. Supported x_y_z_r‘(default), ‘x_y_z_r_matId
comment: the text, which will be added as a comment at the top of file. If you want to

create several lines of text, please use ‘

#‘ for next lines.
consider: anonymous function(optional)

Returns number of spheres which were written.

2.3 yade.linterpolation module

Module for rudimentary support of manipulation with piecewise-linear functions (which are usually
interpolations of higher-order functions, whence the module name). Interpolation is always given as two
lists of the same length, where the x-list must be increasing.
Periodicity is supported by supposing that the interpolation can wrap from the last x-value to the first
x-value (which should be 0 for meaningful results).
Non-periodic interpolation can be converted to periodic one by padding the interpolation with constant
head and tail using the sanitizeInterpolation function.
There is a c++ template function for interpolating on such sequences in
pkg/common/Engine/PartialEngine/LinearInterpolate.hpp (stateful, therefore fast for sequential
reads).
TODO: Interpolating from within python is not (yet) supported.
yade.linterpolation.integral(x, y)

Return integral of piecewise-linear function given by points x0,x1,… and y0,y1,…
yade.linterpolation.revIntegrateLinear(I, x0, y0, x1, y1)

Helper function, returns value of integral variable x for linear function f passing through
(x0,y0),(x1,y1) such that 1. x�[x0,x1] 2. �_x0^x f dx=I and raise exception if such number doesn’t
exist or the solution is not unique (possible?)

yade.linterpolation.sanitizeInterpolation(x, y, x0, x1)
Extends piecewise-linear function in such way that it spans at least the x0…x1 interval, by adding
constant padding at the beginning (using y0) and/or at the end (using y1) or not at all.

yade.linterpolation.xFractionalFromIntegral(integral, x, y)
Return x within range x0…xn such that �_x0^x f dx==integral. Raises error if the integral value
is not reached within the x-range.

106 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

yade.linterpolation.xFromIntegral(integralValue, x, y)
Return x such that �_x0^x f dx==integral. x wraps around at xn. For meaningful results, therefore,
x0 should == 0

2.4 yade.log module

Access and manipulation of log4cxx loggers.
yade.log.loadConfig((str)fileName) → None

Load configuration from file (log4cxx::PropertyConfigurator::configure)
yade.log.setLevel((str)logger, (int)level) → None

Set minimum severity level (constants TRACE, DEBUG, INFO, WARN, ERROR, FATAL) for given logger.
Leading ‘yade.’ will be appended automatically to the logger name; if logger is ‘’, the root logger
‘yade’ will be operated on.

2.5 yade.pack module

Creating packings and filling volumes defined by boundary representation or constructive solid geometry.
For examples, see

• scripts/test/gts-horse.py
• scripts/test/gts-operators.py
• scripts/test/gts-random-pack-obb.py
• scripts/test/gts-random-pack.py
• scripts/test/pack-cloud.py
• scripts/test/pack-predicates.py
• examples/regular-sphere-pack/regular-sphere-pack.py

yade.pack.SpherePack_toSimulation(self, rot=Matrix3(1, 0, 0, 0, 1, 0, 0, 0, 1), **kw)
Append spheres directly to the simulation. In addition calling O.bodies.append, this method also
appropriately sets periodic cell information of the simulation.

>>> from yade import pack; from math import *
>>> sp=pack.SpherePack()

Create random periodic packing with 20 spheres:

>>> sp.makeCloud((0,0,0),(5,5,5),rMean=.5,rRelFuzz=.5,periodic=True,num=20)
20

Virgin simulation is aperiodic:

>>> O.reset()
>>> O.periodic
False

Add generated packing to the simulation, rotated by 45° along +z

>>> sp.toSimulation(rot=Quaternion((0,0,1),pi/4),color=(0,0,1))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Periodic properties are transferred to the simulation correctly, including rotation:

>>> O.periodic
True
>>> O.cell.refSize
Vector3(5,5,5)

2.4. yade.log module 107

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/gts-horse.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/gts-operators.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/gts-random-pack-obb.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/gts-random-pack.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/pack-cloud.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/pack-predicates.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/regular-sphere-pack/regular-sphere-pack.py

Yade Reference Documentation, Release 1st edition

>>> O.cell.hSize
Matrix3(3.53553,-3.53553,0, 3.53553,3.53553,0, 0,0,5)

The current state (even if rotated) is taken as mechanically undeformed, i.e. with identity trans-
formation:

>>> O.cell.trsf
Matrix3(1,0,0, 0,1,0, 0,0,1)

Parameters
• rot (Quaternion/Matrix3) – rotation of the packing, which will be applied on

spheres and will be used to set Cell.trsf as well.
• **kw – passed to utils.sphere

Returns list of body ids added (like O.bodies.append)

yade.pack.cloudBestFitOBB((tuple)arg1) → tuple
Return (Vector3 center, Vector3 halfSize, Quaternion orientation) of best-fit oriented bounding-box
for given tuple of points (uses brute-force velome minimization, do not use for very large clouds).

yade.pack.filterSpherePack(predicate, spherePack, returnSpherePack=None, **kw)
Using given SpherePack instance, return spheres the satisfy predicate. The packing will be recen-
tered to match the predicate and warning is given if the predicate is larger than the packing.

yade.pack.gtsSurface2Facets(surf, **kw)
Construct facets from given GTS surface. **kw is passed to utils.facet.

yade.pack.gtsSurfaceBestFitOBB(surf)
Return (Vector3 center, Vector3 halfSize, Quaternion orientation) describing best-fit oriented
bounding box (OBB) for the given surface. See cloudBestFitOBB for details.

class yade.pack.inGtsSurface_py(inherits Predicate)
This class was re-implemented in c++, but should stay here to serve as reference for implementing
Predicates in pure python code. C++ allows us to play dirty tricks in GTS which are not accessible
through pygts itself; the performance penalty of pygts comes from fact that if constructs and
destructs bb tree for the surface at every invocation of gts.Point().is_inside(). That is cached in
the c++ code, provided that the surface is not manipulated with during lifetime of the object
(user’s responsibility).
—
Predicate for GTS surfaces. Constructed using an already existing surfaces, which must be closed.

import gts surf=gts.read(open(‘horse.gts’)) inGtsSurface(surf)
Note: Padding is optionally supported by testing 6 points along the axes in the pad distance.
This must be enabled in the ctor by saying doSlowPad=True. If it is not enabled and pad is not
zero, warning is issued.
aabb()

class yade.pack.inSpace(inherits Predicate)
Predicate returning True for any points, with infinite bounding box.
aabb()

center()

dim()

yade.pack.randomDensePack(predicate, radius, material=-1, dim=None, cropLayers=0, rRel-
Fuzz=0.0, spheresInCell=0, memoizeDb=None, useOBB=True,
memoDbg=False, color=None)

Generator of random dense packing with given geometry properties, using TriaxialTest (aperiodic)
or PeriIsoCompressor (periodic). The periodicity depens on whether the spheresInCell parameter
is given.

108 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

O.switchScene()magic is used to have clean simulation for TriaxialTest without deleting the original
simulation. This function therefore should never run in parallel with some code accessing your
simulation.

Parameters
• predicate – solid-defining predicate for which we generate packing
• spheresInCell – if given, the packing will be periodic, with given number of

spheres in the periodic cell.
• radius – mean radius of spheres
• rRelFuzz – relative fuzz of the radius – e.g. radius=10, rRelFuzz=.2, then

spheres will have radii 10 ± (10*.2)). 0 by default, meaning all spheres will have
exactly the same radius.

• cropLayers – (aperiodic only) how many layers of spheres will be added to
the computed dimension of the box so that there no (or not so much, at least)
boundary effects at the boundaries of the predicate.

• dim – dimension of the packing, to override dimensions of the predicate (if it is
infinite, for instance)

• memoizeDb – name of sqlite database (existent or nonexistent) to find an
already generated packing or to store the packing that will be generated, if not
found (the technique of caching results of expensive computations is known as
memoization). Fuzzy matching is used to select suitable candidate – packing will
be scaled, rRelFuzz and dimensions compared. Packing that are too small are
dictarded. From the remaining candidate, the one with the least number spheres
will be loaded and returned.

• useOBB – effective only if a inGtsSurface predicate is given. If true (default),
oriented bounding box will be computed first; it can reduce substantially num-
ber of spheres for the triaxial compression (like 10× depending on how much
asymmetric the body is), see scripts/test/gts-triax-pack-obb.py.

• memoDbg – show packigns that are considered and reasons why they are re-
jected/accepted

Returns SpherePack object with spheres, filtered by the predicate.
yade.pack.randomPeriPack(radius, initSize, rRelFuzz=0.0, memoizeDb=None)

Generate periodic dense packing.
A cell of initSize is stuffed with as many spheres as possible, then we run periodic compression
with PeriIsoCompressor, just like with randomDensePack.

Parameters
• radius – mean sphere radius
• rRelFuzz – relative fuzz of sphere radius (equal distribution); see the same

param for randomDensePack.
• initSize – initial size of the periodic cell.

Returns SpherePack object, which also contains periodicity information.
yade.pack.regularHexa(predicate, radius, gap, **kw)

Return set of spheres in regular hexagonal grid, clipped inside solid given by predicate. Created
spheres will have given radius and will be separated by gap space.

yade.pack.regularOrtho(predicate, radius, gap, **kw)
Return set of spheres in regular orthogonal grid, clipped inside solid given by predicate. Created
spheres will have given radius and will be separated by gap space.

yade.pack.revolutionSurfaceMeridians(sects, angles, origin=Vector3(0, 0, 0), orienta-
tion=Quaternion((1, 0, 0), 0))

Revolution surface given sequences of 2d points and sequence of corresponding angles, returning

2.5. yade.pack module 109

Yade Reference Documentation, Release 1st edition

sequences of 3d points representing meridian sections of the revolution surface. The 2d sections
are turned around z-axis, but they can be transformed using the origin and orientation arguments
to give arbitrary orientation.

yade.pack.sweptPolylines2gtsSurface(pts, threshold=0, capStart=False, capEnd=False)
Create swept suface (as GTS triangulation) given same-length sequences of points (as 3-tuples).
If threshold is given (>0), then

•degenerate faces (with edges shorter than threshold) will not be created
•gts.Surface().cleanup(threshold) will be called before returning, which merges vertices mutu-
ally closer than threshold. In case your pts are closed (last point concident with the first
one) this will the surface strip of triangles. If you additionally have capStart==True and
capEnd==True, the surface will be closed.

Note: capStart and capEnd make the most naive polygon triangulation (diagonals) and will
perhaps fail for non-convex sections.

Warning: the algorithm connects points sequentially; if two polylines are mutually rotated or
have inverse sense, the algorithm will not detect it and connect them regardless in their given
order.

Creation, manipulation, IO for generic sphere packings.
class yade._packSpheres.SpherePack

Set of spheres represented as centers and radii. This class is returned by pack.randomDensePack,
pack.randomPeriPack and others. The object supports iteration over spheres, as in

>>> sp=SpherePack()
>>> for center,radius in sp: print center,radius

>>> for sphere in sp: print sphere[0],sphere[1] ## same, but without unpacking the tuple automatically

>>> for i in range(0,len(sp)): print sp[i][0], sp[i][1] ## same, but accessing spheres by index

Special constructors
Construct from list of [(c1,r1),(c2,r2),…]. To convert two same-length lists of centers and
radii, construct with zip(centers,radii).

__init__([(list)list]) → None
Empty constructor, optionally taking list [((cx,cy,cz),r), …] for initial data.

aabb() → tuple
Get axis-aligned bounding box coordinates, as 2 3-tuples.

add((Vector3)arg2, (float)arg3) → None
Add single sphere to packing, given center as 3-tuple and radius

appliedPsdScaling
A factor between 0 and 1, uniformly applied on all sizes of of the PSD.

cellFill((Vector3)arg2) → None
Repeat the packing (if periodic) so that the results has dim() >= given size. The packing
retains periodicity, but changes cellSize. Raises exception for non-periodic packing.

cellRepeat((Vector3i)arg2) → None
Repeat the packing given number of times in each dimension. Periodicity is retained, cellSize
changes. Raises exception for non-periodic packing.

cellSize
Size of periodic cell; is Vector3(0,0,0) if not periodic. (Change this property only if you know
what you’re doing).

center() → Vector3
Return coordinates of the bounding box center.

110 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

dim() → Vector3
Return dimensions of the packing in terms of aabb(), as a 3-tuple.

fromList((list)arg2) → None
Make packing from given list, same format as for constructor. Discards current data.

fromList((SpherePack)arg1, (object)centers, (object)radii) → None : Make pack-
ing from given list, same format as for constructor. Discards current data.

fromSimulation() → None
Make packing corresponding to the current simulation. Discards current data.

getClumps() → tuple
Return lists of sphere ids sorted by clumps they belong to. The return value is (stan-
dalones,[clump1,clump2,…]), where each item is list of id’s of spheres.

hasClumps() → bool
Whether this object contains clumps.

load((str)fileName) → None
Load packing from external text file (current data will be discarded).

makeCloud([(Vector3)minCorner=Vector3(0, 0, 0)[, (Vector3)maxCorner=Vector3(0, 0, 0)[,
(float)rMean=-1[, (float)rRelFuzz=0[, (int)num=-1[, (bool)periodic=False[,
(float)porosity=0.5[, (object)psdSizes=[][, (object)psdCumm=[][,
(bool)distributeMass=False[, (int)seed=0[, (Matrix3)hSize=Matrix3(0, 0, 0,
0, 0, 0, 0, 0, 0)]]]]]]]]]]]]) → int

Create random loose packing enclosed in a parallelepiped. Sphere radius distribution can be
specified using one of the following ways:

1.rMean, rRelFuzz and num gives uniform radius distribution in rMean (1 ± rRelFuzz).
Less than num spheres can be generated if it is too high.

2.rRelFuzz, num and (optional) porosity, which estimates mean radius so that porosity is
attained at the end. rMean must be less than 0 (default). porosity is only an initial guess
for the generation algorithm, which will retry with higher porosity until the prescibed
num is obtained.

3.psdSizes and psdCumm, two arrays specifying points of the particle size distribution func-
tion. As many spheres as possible are generated.

4.psdSizes, psdCumm, num, and (optional) porosity, like above but if num is not obtained,
psdSizes will be scaled down uniformly, until num is obtained (see appliedPsdScaling).

By default (with distributeMass==False), the distribution is applied to particle radii. The
usual sense of “particle size distribution” is the distribution of mass fraction (rather than
particle count); this can be achieved with distributeMass=True.
If num is defined, then sizes generation is deterministic, giving the best fit of target distribu-
tion. It enables spheres placement in descending size order, thus giving lower porosity than
the random generation.

Parameters
• minCorner (Vector3) – lower corner of an axis-aligned box
• maxCorner (Vector3) – upper corner of an axis-aligned box
• hSize (Matrix3) – base vectors of a generalized box (arbitrary parallelepiped,

typically Cell::hSize), superseeds minCorner and maxCorner if defined. For
periodic boundaries only.

• rMean (float) – mean radius or spheres
• rRelFuzz (float) – dispersion of radius relative to rMean

2.5. yade.pack module 111

http://en.wikipedia.org/wiki/Particle_size_distribution

Yade Reference Documentation, Release 1st edition

• num (int) – number of spheres to be generated. If negavite (default), generate
as many as possible with stochastic sizes, ending after a fixed number of tries to
place the sphere in space, else generate exactly num spheres with deterministic
size distribution.

• periodic (bool) – whether the packing to be generated should be periodic
• porosity (float) – initial guess for the iterative generation procedure (if

num>1). The algorithm will be retrying until the number of generated spheres
is num. The first iteration tries with the provided porosity, but next itera-
tions increase it if necessary (hence an initialy high porosity can speed-up the
algorithm). If psdSizes is not defined, rRelFuzz (z) and num (N) are used so
that the porosity given (ρ) is approximately achieved at the end of generation,
rm = 3

√
V(1−ρ)

4
3
π(1+z2)N

. The default is ρ=0.5. The optimal value depends on
rRelFuzz or psdSizes.

• psdSizes – sieve sizes (particle diameters) when particle size distribution
(PSD) is specified

• psdCumm – cummulative fractions of particle sizes given by psdSizes; must
be the same length as psdSizes and should be non-decreasing

• distributeMass (bool) – if True, given distribution will be used to distribute
sphere’s mass rather than radius of them.

• seed – number used to initialize the random number generator.
Returns number of created spheres, which can be lower than num depending on the

method used.
makeClumpCloud((Vector3)minCorner, (Vector3)maxCorner, (object)clumps[,

(bool)periodic=False[, (int)num=-1]]) → int
Create random loose packing of clumps within box given by minCorner and maxCorner.
Clumps are selected with equal probability. At most num clumps will be positioned if num is
positive; otherwise, as many clumps as possible will be put in space, until maximum number
of attemps to place a new clump randomly is attained.

particleSD((Vector3)minCorner, (Vector3)maxCorner, (float)rMean, (bool)periodic=False,
(str)name, (int)numSph[, (object)radii=[][, (object)passing=[][,
(bool)passingIsNotPercentageButCount=False[, (int)seed=0]]]]) → int

Create random packing enclosed in box given by minCorner and maxCorner, containing num-
Sph spheres. Returns number of created spheres, which can be < num if the packing is too
tight. The computation is done according to the given psd.

particleSD2((object)radii, (object)passing, (int)numSph[, (bool)periodic=False[,
(float)cloudPorosity=0.80000000000000004[, (int)seed=0]]]) → int

Create random packing following the given particle size distribution (radii and volume/mass
passing for each fraction) and total number of particles numSph. The cloud size (periodic or
aperiodic) is computed from the PSD and is always cubic.

psd([(int)bins=50[, (bool)mass=True]]) → tuple
Return particle size distribution of the packing. :param int bins: number of bins between
minimum and maximum diameter :param mass: Compute relative mass rather than relative
particle count for each bin. Corresponds to distributeMass parameter for makeCloud. :returns:
tuple of (cumm,edges), where cumm are cummulative fractions for respective diameters and
edges are those diameter values. Dimension of both arrays is equal to bins+1.

psdScaleExponent
[Deprecated] Defined for compatibility, no effect.

relDensity() → float
Relative packing density, measured as sum of spheres’ volumes / aabb volume. (Sphere
overlaps are ignored.)

112 Chapter 2. Yade modules

http://en.wikipedia.org/wiki/Particle_size_distribution

Yade Reference Documentation, Release 1st edition

rotate((Vector3)axis, (float)angle) → None
Rotate all spheres around packing center (in terms of aabb()), given axis and angle of the
rotation.

save((str)fileName) → None
Save packing to external text file (will be overwritten).

scale((float)arg2) → None
Scale the packing around its center (in terms of aabb()) by given factor (may be negative).

toList() → list
Return packing data as python list.

toSimulation()
Append spheres directly to the simulation. In addition calling O.bodies.append, this method
also appropriately sets periodic cell information of the simulation.
>>> from yade import pack; from math import * >>> sp=pack.SpherePack()
Create random periodic packing with 20 spheres:
>>> sp.makeCloud((0,0,0),(5,5,5),rMean=.5,rRelFuzz=.5,periodic=True,num=20) 20
Virgin simulation is aperiodic:
>>> O.reset() >>> O.periodic False
Add generated packing to the simulation, rotated by 45° along +z
>>> sp.toSimulation(rot=Quaternion((0,0,1),pi/4),color=(0,0,1)) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
Periodic properties are transferred to the simulation correctly, including rotation:
>>> O.periodic True >>> O.cell.refSize Vector3(5,5,5) >>> O.cell.hSize Matrix3(3.53553,-
3.53553,0, 3.53553,3.53553,0, 0,0,5)
The current state (even if rotated) is taken as mechanically undeformed, i.e. with identity
transformation:
>>> O.cell.trsf Matrix3(1,0,0, 0,1,0, 0,0,1)

Parameters
• rot (Quaternion/Matrix3) – rotation of the packing, which will be applied on

spheres and will be used to set Cell.trsf as well.
• **kw – passed to utils.sphere

Returns list of body ids added (like O.bodies.append)
translate((Vector3)arg2) → None

Translate all spheres by given vector.
class yade._packSpheres.SpherePackIterator

__init__((SpherePackIterator)arg2) → None
next() → tuple

Spatial predicates for volumes (defined analytically or by triangulation).
class yade._packPredicates.Predicate

aabb() → tuple
aabb((Predicate)arg1) → None

center() → Vector3
dim() → Vector3

class yade._packPredicates.PredicateBoolean(inherits Predicate)
Boolean operation on 2 predicates (abstract class)

2.5. yade.pack module 113

Yade Reference Documentation, Release 1st edition

A

B

__init__()
Raises an exception This class cannot be instantiated from Python

class yade._packPredicates.PredicateDifference(inherits PredicateBoolean → Predicate)
Difference (conjunction with negative predicate) of 2 predicates. A point has to be inside the first
and outside the second predicate. Can be constructed using the - operator on predicates: pred1
- pred2.
__init__((object)arg2, (object)arg3) → None

class yade._packPredicates.PredicateIntersection(inherits PredicateBoolean → Predicate)
Intersection (conjunction) of 2 predicates. A point has to be inside both predicates. Can be
constructed using the & operator on predicates: pred1 & pred2.
__init__((object)arg2, (object)arg3) → None

class yade._packPredicates.PredicateSymmetricDifference(inherits PredicateBoolean →
Predicate)

SymmetricDifference (exclusive disjunction) of 2 predicates. A point has to be in exactly one
predicate of the two. Can be constructed using the ^ operator on predicates: pred1 ^ pred2.
__init__((object)arg2, (object)arg3) → None

class yade._packPredicates.PredicateUnion(inherits PredicateBoolean → Predicate)
Union (non-exclusive disjunction) of 2 predicates. A point has to be inside any of the two predicates
to be inside. Can be constructed using the | operator on predicates: pred1 | pred2.
__init__((object)arg2, (object)arg3) → None

class yade._packPredicates.inAlignedBox(inherits Predicate)
Axis-aligned box predicate
__init__((Vector3)minAABB, (Vector3)maxAABB) → None

Ctor taking minumum and maximum points of the box (as 3-tuples).
class yade._packPredicates.inCylinder(inherits Predicate)

Cylinder predicate
__init__((Vector3)centerBottom, (Vector3)centerTop, (float)radius) → None

Ctor taking centers of the lateral walls (as 3-tuples) and radius.
class yade._packPredicates.inEllipsoid(inherits Predicate)

Ellipsoid predicate
__init__((Vector3)centerPoint, (Vector3)abc) → None

Ctor taking center of the ellipsoid (3-tuple) and its 3 radii (3-tuple).
class yade._packPredicates.inGtsSurface(inherits Predicate)

GTS surface predicate

__init__((object)surface[, (bool)noPad]) → None
Ctor taking a gts.Surface() instance, which must not be modified during instance lifetime.
The optional noPad can disable padding (if set to True), which speeds up calls several times.
Note: padding checks inclusion of 6 points along +- cardinal directions in the pad distance
from given point, which is not exact.

surf
The associated gts.Surface object.

class yade._packPredicates.inHyperboloid(inherits Predicate)
Hyperboloid predicate
__init__((Vector3)centerBottom, (Vector3)centerTop, (float)radius, (float)skirt) → None

Ctor taking centers of the lateral walls (as 3-tuples), radius at bases and skirt (middle radius).
class yade._packPredicates.inParallelepiped(inherits Predicate)

Parallelepiped predicate

114 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

__init__((Vector3)o, (Vector3)a, (Vector3)b, (Vector3)c) → None
Ctor taking four points: o (for origin) and then a, b, c which define endpoints of 3 respective
edges from o.

class yade._packPredicates.inSphere(inherits Predicate)
Sphere predicate.
__init__((Vector3)center, (float)radius) → None

Ctor taking center (as a 3-tuple) and radius
class yade._packPredicates.notInNotch(inherits Predicate)

Outside of infinite, rectangle-shaped notch predicate
__init__((Vector3)centerPoint, (Vector3)edge, (Vector3)normal, (float)aperture) → None

Ctor taking point in the symmetry plane, vector pointing along the edge, plane normal and
aperture size. The side inside the notch is edge×normal. Normal is made perpendicular to
the edge. All vectors are normalized at construction time.

Computation of oriented bounding box for cloud of points.
yade._packObb.cloudBestFitOBB((tuple)arg1) → tuple

Return (Vector3 center, Vector3 halfSize, Quaternion orientation) of best-fit oriented bounding-box
for given tuple of points (uses brute-force velome minimization, do not use for very large clouds).

2.6 yade.plot module

Module containing utility functions for plotting inside yade. See examples/simple-scene/simple-scene-
plot.py or examples/concrete/uniax.py for example of usage.
yade.plot.data

Global dictionary containing all data values, common for all plots, in the form {‘name’:[value,...],...}.
Data should be added using plot.addData function. All [value,...] columns have the same length,
they are padded with NaN if unspecified.

yade.plot.plots
dictionary x-name -> (yspec,...), where yspec is either y-name or (y-name,’line-specification’). If
(yspec,...) is None, then the plot has meaning of image, which will be taken from respective
field of plot.imgData.

yade.plot.labels
Dictionary converting names in data to human-readable names (TeX names, for instance); if a
variable is not specified, it is left untranslated.

yade.plot.live
Enable/disable live plot updating. Disabled by default for now, since it has a few rough edges.

yade.plot.liveInterval
Interval for the live plot updating, in seconds.

yade.plot.autozoom
Enable/disable automatic plot rezooming after data update.

yade.plot.plot(noShow=False, subPlots=True)
Do the actual plot, which is either shown on screen (and nothing is returned: if noShow is False)
or, if noShow is True, returned as matplotlib’s Figure object or list of them.
You can use

>>> from yade import plot
>>> plot.resetData()
>>> plot.plots={'foo':('bar',)}
>>> plot.plot(noShow=True).savefig('someFile.pdf')
>>> import os
>>> os.path.exists('someFile.pdf')
True

2.6. yade.plot module 115

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/simple-scene/simple-scene-plot.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/simple-scene/simple-scene-plot.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/concrete/uniax.py

Yade Reference Documentation, Release 1st edition

to save the figure to file automatically.
Note: For backwards compatibility reasons, noShow option will return list of figures for multiple
figures but a single figure (rather than list with 1 element) if there is only 1 figure.

yade.plot.reset()
Reset all plot-related variables (data, plots, labels)

yade.plot.resetData()
Reset all plot data; keep plots and labels intact.

yade.plot.splitData()
Make all plots discontinuous at this point (adds nan’s to all data fields)

yade.plot.reverseData()
Reverse yade.plot.data order.
Useful for tension-compression test, where the initial (zero) state is loaded and, to make data
continuous, last part must end in the zero state.

yade.plot.addData(*d_in, **kw)
Add data from arguments name1=value1,name2=value2 to yade.plot.data. (the old
{‘name1’:value1,’name2’:value2} is deprecated, but still supported)
New data will be padded with nan’s, unspecified data will be nan (nan’s don’t appear in graphs).
This way, equal length of all data is assured so that they can be plotted one against any other.

>>> from yade import plot
>>> from pprint import pprint
>>> plot.resetData()
>>> plot.addData(a=1)
>>> plot.addData(b=2)
>>> plot.addData(a=3,b=4)
>>> pprint(plot.data)
{'a': [1, nan, 3], 'b': [nan, 2, 4]}

Some sequence types can be given to addData; they will be saved in synthesized columns for
individual components.

>>> plot.resetData()
>>> plot.addData(c=Vector3(5,6,7),d=Matrix3(8,9,10, 11,12,13, 14,15,16))
>>> pprint(plot.data)
{'c_x': [5.0],
'c_y': [6.0],
'c_z': [7.0],
'd_xx': [8.0],
'd_xy': [9.0],
'd_xz': [10.0],
'd_yy': [12.0],
'd_yz': [11.0],
'd_zx': [14.0],
'd_zy': [15.0],
'd_zz': [16.0]}

yade.plot.addAutoData()
Add data by evaluating contents of plot.plots. Expressions rasing exceptions will be handled
gracefully, but warning is printed for each.

>>> from yade import plot
>>> from pprint import pprint
>>> O.reset()
>>> plot.resetData()
>>> plot.plots={'O.iter':('O.time',None,'numParticles=len(O.bodies)')}
>>> plot.addAutoData()
>>> pprint(plot.data)
{'O.iter': [0], 'O.time': [0.0], 'numParticles': [0]}

116 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

Note that each item in plot.plots can be
•an expression to be evaluated (using the eval builtin);
•name=expression string, where name will appear as label in plots, and expression will be
evaluated each time;

•a dictionary-like object – current keys are labels of plots and current values are added to
plot.data. The contents of the dictionary can change over time, in which case new lines will
be created as necessary.

A simple simulation with plot can be written in the following way; note how the energy plot is
specified.

>>> from yade import plot, utils
>>> plot.plots={'i=O.iter':(O.energy,None,'total energy=O.energy.total()')}
>>> # we create a simple simulation with one ball falling down
>>> plot.resetData()
>>> O.bodies.append(utils.sphere((0,0,0),1))
0
>>> O.dt=utils.PWaveTimeStep()
>>> O.engines=[
... ForceResetter(),
... GravityEngine(gravity=(0,0,-10)),
... NewtonIntegrator(damping=.4,kinSplit=True),
... # get data required by plots at every step
... PyRunner(command='yade.plot.addAutoData()',iterPeriod=1,initRun=True)
...]
>>> O.trackEnergy=True
>>> O.run(2,True)
>>> pprint(plot.data)
{'gravWork': [0.0, -25.13274...],
'i': [0, 1],
'kinRot': [0.0, 0.0],
'kinTrans': [0.0, 7.5398...],
'nonviscDamp': [0.0, 10.0530...],
'total energy': [0.0, -7.5398...]}

yade.plot.saveGnuplot(baseName, term=’wxt’, extension=None, timestamp=False, com-
ment=None, title=None, varData=False)

Save data added with plot.addData into (compressed) file and create .gnuplot file that attempts
to mimick plots specified with plot.plots.

Parameters
• baseName – used for creating baseName.gnuplot (command file for gnuplot),

associated baseName.data.bz2 (data) and output files (if applicable) in the form
baseName.[plot number].extension

• term – specify the gnuplot terminal; defaults to x11, in which case gnuplot will
draw persistent windows to screen and terminate; other useful terminals are png,
cairopdf and so on

• extension – extension for baseName defaults to terminal name; fine for png for
example; if you use cairopdf, you should also say extension='pdf' however

• timestamp (bool) – append numeric time to the basename
• varData (bool) – whether file to plot will be declared as variable or be in-place

in the plot expression
• comment – a user comment (may be multiline) that will be embedded in the

control file
Returns name of the gnuplot file created.

yade.plot.saveDataTxt(fileName, vars=None)
Save plot data into a (optionally compressed) text file. The first line contains a comment (starting

2.6. yade.plot module 117

Yade Reference Documentation, Release 1st edition

with #) giving variable name for each of the columns. This format is suitable for being loaded for
further processing (outside yade) with numpy.genfromtxt function, which recognizes those variable
names (creating numpy array with named entries) and handles decompression transparently.

>>> from yade import plot
>>> from pprint import pprint
>>> plot.reset()
>>> plot.addData(a=1,b=11,c=21,d=31) # add some data here
>>> plot.addData(a=2,b=12,c=22,d=32)
>>> pprint(plot.data)
{'a': [1, 2], 'b': [11, 12], 'c': [21, 22], 'd': [31, 32]}
>>> plot.saveDataTxt('/tmp/dataFile.txt.bz2',vars=('a','b','c'))
>>> import numpy
>>> d=numpy.genfromtxt('/tmp/dataFile.txt.bz2',dtype=None,names=True)
>>> d['a']
array([1, 2])
>>> d['b']
array([11, 12])

Parameters
• fileName – file to save data to; if it ends with .bz2 / .gz, the file will be

compressed using bzip2 / gzip.
• vars – Sequence (tuple/list/set) of variable names to be saved. If None (default),

all variables in plot.plot are saved.

yade.plot.savePlotSequence(fileBase, stride=1, imgRatio=(5, 7), title=None, titleFrames=20,
lastFrames=30)

Save sequence of plots, each plot corresponding to one line in history. It is especially meant to be
used for utils.makeVideo.

Parameters
• stride – only consider every stride-th line of history (default creates one frame

per each line)
• title – Create title frame, where lines of title are separated with newlines (\n)

and optional subtitle is separated from title by double newline.
• titleFrames (int) – Create this number of frames with title (by repeating its

filename), determines how long the title will stand in the movie.
• lastFrames (int) – Repeat the last frame this number of times, so that the

movie does not end abruptly.
Returns List of filenames with consecutive frames.

2.7 yade.post2d module

Module for 2d postprocessing, containing classes to project points from 3d to 2d in various ways, providing
basic but flexible framework for extracting arbitrary scalar values from bodies/interactions and plotting
the results. There are 2 basic components: flatteners and extractors.
The algorithms operate on bodies (default) or interactions, depending on the intr parameter of
post2d.data.

2.7.1 Flatteners

Instance of classes that convert 3d (model) coordinates to 2d (plot) coordinates. Their interface is defined
by the post2d.Flatten class (__call__, planar, normal).

118 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

2.7.2 Extractors

Callable objects returning scalar or vector value, given a body/interaction object. If a 3d vector is
returned, Flattener.planar is called, which should return only in-plane components of the vector.

2.7.3 Example

This example can be found in examples/concrete/uniax-post.py

from yade import post2d
import pylab # the matlab-like interface of matplotlib

O.load('/tmp/uniax-tension.xml.bz2')

flattener that project to the xz plane
flattener=post2d.AxisFlatten(useRef=False,axis=1)
return scalar given a Body instance
extractDmg=lambda b: b.state.normDmg
will call flattener.planar implicitly
the same as: extractVelocity=lambda b: flattener.planar(b,b.state.vel)
extractVelocity=lambda b: b.state.vel

create new figure
pylab.figure()
plot raw damage
post2d.plot(post2d.data(extractDmg,flattener))

plot smooth damage into new figure
pylab.figure(); ax,map=post2d.plot(post2d.data(extractDmg,flattener,stDev=2e-3))
show color scale
pylab.colorbar(map,orientation='horizontal')

raw velocity (vector field) plot
pylab.figure(); post2d.plot(post2d.data(extractVelocity,flattener))

smooth velocity plot; data are sampled at regular grid
pylab.figure(); ax,map=post2d.plot(post2d.data(extractVelocity,flattener,stDev=1e-3))
save last (current) figure to file
pylab.gcf().savefig('/tmp/foo.png')

show the figures
pylab.show()

class yade.post2d.AxisFlatten(inherits Flatten)

__init__()
:param bool useRef: use reference positions rather than actual positions (only meaningful
when operating on Bodies) :param {0,1,2} axis: axis normal to the plane; the return value
will be simply position with this component dropped.

normal()

planar()

class yade.post2d.CylinderFlatten(inherits Flatten)
Class for converting 3d point to 2d based on projection onto plane from circle. The y-axis in the
projection corresponds to the rotation axis; the x-axis is distance form the axis.
__init__()

:param useRef: (bool) use reference positions rather than actual positions :param axis: axis
of the cylinder, �{0,1,2}

normal()

2.7. yade.post2d module 119

Yade Reference Documentation, Release 1st edition

planar()

class yade.post2d.Flatten
Abstract class for converting 3d point into 2d. Used by post2d.data2d.
normal()

Given position and vector value, return lenght of the vector normal to the flat plane.
planar()

Given position and vector value, project the vector value to the flat plane and return its 2
in-plane components.

class yade.post2d.HelixFlatten(inherits Flatten)
Class converting 3d point to 2d based on projection from helix. The y-axis in the projection
corresponds to the rotation axis
__init__()

:param bool useRef: use reference positions rather than actual positions :param (ϑmin,ϑmax)
thetaRange: bodies outside this range will be discarded :param float dH_dTheta: inclination
of the spiral (per radian) :param {0,1,2} axis: axis of rotation of the spiral :param float
periodStart: height of the spiral for zero angle

normal()

planar()

yade.post2d.data(extractor, flattener, intr=False, onlyDynamic=True, stDev=None, relThresh-
old=3.0, perArea=0, div=(50, 50), margin=(0, 0), radius=1)

Filter all bodies/interactions, project them to 2d and extract required scalar value; return either
discrete array of positions and values, or smoothed data, depending on whether the stDev value is
specified.
The intr parameter determines whether we operate on bodies or interactions; the extractor pro-
vided should expect to receive body/interaction.

Parameters
• extractor (callable) – receives Body (or Interaction, if intr is True) in-

stance, should return scalar, a 2-tuple (vector fields) or None (to skip that
body/interaction)

• flattener (callable) – post2d.Flatten instance, receiving body/interaction, re-
turns its 2d coordinates or None (to skip that body/interaction)

• intr (bool) – operate on interactions rather than bodies
• onlyDynamic (bool) – skip all non-dynamic bodies
• stDev (float/None) – standard deviation for averaging, enables smoothing; None

(default) means raw mode, where discrete points are returned
• relThreshold (float) – threshold for the gaussian weight function relative to

stDev (smooth mode only)
• perArea (int) – if 1, compute weightedSum/weightedArea rather than weighted

average (weightedSum/sumWeights); the first is useful to compute average stress;
if 2, compute averages on subdivision elements, not using weight function

• div ((int,int)) – number of cells for the gaussian grid (smooth mode only)
• margin ((float,float)) – x,y margins around bounding box for data (smooth

mode only)
• radius (float/callable) – Fallback value for radius (for raw plotting) for non-

spherical bodies or interactions; if a callable, receives body/interaction and re-
turns radius

Returns dictionary

120 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

Returned dictionary always containing keys ‘type’ (one of
‘rawScalar’,’rawVector’,’smoothScalar’,’smoothVector’, depending on value of smooth and on
return value from extractor), ‘x’, ‘y’, ‘bbox’.
Raw data further contains ‘radii’.
Scalar fields contain ‘val’ (value from extractor), vector fields have ‘valX’ and ‘valY’ (2 components
returned by the extractor).

yade.post2d.plot(data, axes=None, alpha=0.5, clabel=True, cbar=False, aspect=’equal’, **kw)
Given output from post2d.data, plot the scalar as discrete or smooth plot.
For raw discrete data, plot filled circles with radii of particles, colored by the scalar value.
For smooth discrete data, plot image with optional contours and contour labels.
For vector data (raw or smooth), plot quiver (vector field), with arrows colored by the magnitude.

Parameters
• axes – matplotlib.axesinstance where the figure will be plotted; if None, will be

created from scratch.
• data – value returned by post2d.data
• clabel (bool) – show contour labels (smooth mode only), or annotate cells with

numbers inside (with perArea==2)
• cbar (bool) – show colorbar (equivalent to calling pylab.colorbar(mappable) on

the returned mappable)
Returns tuple of (axes,mappable); mappable can be used in further calls to py-

lab.colorbar.

2.8 yade.qt module

Common initialization core for yade.
This file is executed when anything is imported from yade for the first time. It loads yade plugins and
injects c++ class constructors to the __builtins__ (that might change in the future, though) namespace,
making them available everywhere.
yade.qt.Renderer() → OpenGLRenderer

Return the active OpenGLRenderer object.
yade.qt.View() → GLViewer

Create a new 3d view.
yade.qt.bin()

bin(QTextStream) -> QTextStream
yade.qt.center() → None

Center all views.
yade.qt.hex()

hex(QTextStream) -> QTextStream
yade.qt.oct()

oct(QTextStream) -> QTextStream
yade.qt.views() → list

Return list of all open qt.GLViewer objects
class yade.qt._GLViewer.GLViewer

__init__()
Raises an exception This class cannot be instantiated from Python

2.8. yade.qt module 121

Yade Reference Documentation, Release 1st edition

axes
Show arrows for axes.

center([(bool)median=True]) → None
Center view. View is centered either so that all bodies fit inside (*median*=False), or so that
75% of bodies fit inside (*median*=True).

close() → None
eyePosition

Camera position.
fitAABB((Vector3)mn, (Vector3)mx) → None

Adjust scene bounds so that Axis-aligned bounding box given by its lower and upper corners
mn, mx fits in.

fitSphere((Vector3)center, (float)radius) → None
Adjust scene bounds so that sphere given by center and radius fits in.

fps
Show frames per second indicator.

grid
Display square grid in zero planes, as 3-tuple of bools for yz, xz, xy planes.

loadState((int)slot) → None
Load display parameters from slot saved previously into, identified by its number.

lookAt
Point at which camera is directed.

ortho
Whether orthographic projection is used; if false, use perspective projection.

saveState((int)slot) → None
Save display parameters into numbered memory slot. Saves state for both GLViewer and
associated OpenGLRenderer.

scale
Scale of the view (?)

sceneRadius
Visible scene radius.

screenSize
Size of the viewer’s window, in scree pixels

selection

showEntireScene() → None
timeDisp

Time displayed on in the vindow; is a string composed of characters r, v, i standing respectively
for real time, virtual time, iteration number.

upVector
Vector that will be shown oriented up on the screen.

viewDir
Camera orientation (as vector).

yade.qt._GLViewer.Renderer() → OpenGLRenderer
Return the active OpenGLRenderer object.

class yade.qt._GLViewer.SnapshotEngine(inherits PeriodicEngine → GlobalEngine → Engine→ Serializable)
Periodically save snapshots of GLView(s) as .png files. Files are named *file-
Base*+*counter*+’.png’ (counter is left-padded by 0s, i.e. snap00004.png).

122 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

counter(=0)
Number that will be appended to fileBase when the next snapshot is saved (incremented at
every save). (auto-updated)

deadTimeout(=3)
Timeout for 3d operations (opening new view, saving snapshot); after timing out, throw
exception (or only report error if ignoreErrors) and make myself dead. [s]

fileBase(=”“)
Basename for snapshots

format(=”PNG”)
Format of snapshots (one of JPEG, PNG, EPS, PS, PPM, BMP) QGLViewer documentation.
File extension will be lowercased format. Validity of format is not checked.

ignoreErrors(=true)
Only report errors instead of throwing exceptions, in case of timeouts.

msecSleep(=0)
number of msec to sleep after snapshot (to prevent 3d hw problems) [ms]

plot(=uninitalized)
Name of field in plot.imgData to which taken snapshots will be appended automatically.

snapshots(=uninitalized)
Files that have been created so far

yade.qt._GLViewer.View() → GLViewer
Create a new 3d view.

yade.qt._GLViewer.center() → None
Center all views.

yade.qt._GLViewer.views() → list
Return list of all open qt.GLViewer objects

2.9 yade.timing module

Functions for accessing timing information stored in engines and functors.
See timing section of the programmer’s manual, wiki page for some examples.
yade.timing.reset()

Zero all timing data.
yade.timing.stats()

Print summary table of timing information from engines and functors. Absolute times as well as
percentages are given. Sample output:

Name Count Time Rel. time
--
ForceResetter 400 9449µs 0.01%
BoundingVolumeMetaEngine 400 1171770µs 1.15%
PersistentSAPCollider 400 9433093µs 9.24%
InteractionGeometryMetaEngine 400 15177607µs 14.87%
InteractionPhysicsMetaEngine 400 9518738µs 9.33%
ConstitutiveLawDispatcher 400 64810867µs 63.49%
ef2_Spheres_Brefcom_BrefcomLaw

setup 4926145 7649131µs 15.25%
geom 4926145 23216292µs 46.28%
material 4926145 8595686µs 17.14%
rest 4926145 10700007µs 21.33%
TOTAL 50161117µs 100.00%

"damper" 400 1866816µs 1.83%
"strainer" 400 21589µs 0.02%
"plotDataCollector" 160 64284µs 0.06%

2.9. yade.timing module 123

http://www.libqglviewer.com/refManual/classQGLViewer.html#abbb1add55632dced395e2f1b78ef491c
http://yade-dem.org/index.php/Speed_profiling_using_TimingInfo_and_TimingDeltas_classes

Yade Reference Documentation, Release 1st edition

"damageChecker" 9 3272µs 0.00%
TOTAL 102077490µs 100.00%

2.10 yade.utils module

Heap of functions that don’t (yet) fit anywhere else.
Devs: please DO NOT ADD more functions here, it is getting too crowded!
yade.utils.NormalRestitution2DampingRate(en)

Compute the normal damping rate as a function of the normal coefficient of restitution en. For
en ∈ 〈0, 1〉 damping rate equals

−
log en√
e2n + π2

yade.utils.PWaveTimeStep() → float
Get timestep accoring to the velocity of P-Wave propagation; computed from sphere radii, rigidities
and masses.

yade.utils.SpherePWaveTimeStep(radius, density, young)
Compute P-wave critical timestep for a single (presumably representative) sphere, using formula
for P-Wave propagation speed ∆tc = r√

E/ρ
. If you want to compute minimum critical timestep

for all spheres in the simulation, use utils.PWaveTimeStep instead.

>>> SpherePWaveTimeStep(1e-3,2400,30e9)
2.8284271247461903e-07

class yade.utils.TableParamReader
Class for reading simulation parameters from text file.
Each parameter is represented by one column, each parameter set by one line. Colums are separated
by blanks (no quoting).
First non-empty line contains column titles (without quotes). You may use special column named
‘description’ to describe this parameter set; if such colum is absent, description will be built by
concatenating column names and corresponding values (param1=34,param2=12.22,param4=foo)

•from columns ending in ! (the ! is not included in the column name)
•from all columns, if no columns end in !.

Empty lines within the file are ignored (although counted); # starts comment till the end of line.
Number of blank-separated columns must be the same for all non-empty lines.
A special value = can be used instead of parameter value; value from the previous non-empty line
will be used instead (works recursively).
This class is used by utils.readParamsFromTable.
__init__()

Setup the reader class, read data into memory.
paramDict()

Return dictionary containing data from file given to constructor. Keys are line numbers (which
might be non-contiguous and refer to real line numbers that one can see in text editors), values
are dictionaries mapping parameter names to their values given in the file. The special value
‘=’ has already been interpreted, ! (bangs) (if any) were already removed from column titles,
description column has already been added (if absent).

yade.utils.aabbDim(cutoff=0.0, centers=False)
Return dimensions of the axis-aligned bounding box, optionally with relative part cutoff cut away.

124 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

yade.utils.aabbExtrema([(float)cutoff=0.0[, (bool)centers=False]]) → tuple
Return coordinates of box enclosing all bodies

Parameters
• centers (bool) – do not take sphere radii in account, only their centroids
• cutoff (float�〈0…1〉) – relative dimension by which the box will be cut away at

its boundaries.
Returns (lower corner, upper corner) as (Vector3,Vector3)

yade.utils.aabbExtrema2d(pts)
Return 2d bounding box for a sequence of 2-tuples.

yade.utils.aabbWalls(extrema=None, thickness=None, oversizeFactor=1.5, **kw)
Return 6 boxes that will wrap existing packing as walls from all sides; extrema are extremal points of
the Aabb of the packing (will be calculated if not specified) thickness is wall thickness (will be 1/10
of the X-dimension if not specified) Walls will be enlarged in their plane by oversizeFactor. returns
list of 6 wall Bodies enclosing the packing, in the order minX,maxX,minY,maxY,minZ,maxZ.

yade.utils.approxSectionArea((float)arg1, (int)arg2) → float
Compute area of convex hull when when taking (swept) spheres crossing the plane at coord, per-
pendicular to axis.

yade.utils.avgNumInteractions(cutoff=0.0, skipFree=False)
Return average numer of interactions per particle, also known as coordination number Z. This
number is defined as

Z = 2C/N

where C is number of contacts and N is number of particles.
With skipFree, particles not contributing to stable state of the packing are skipped, following
equation (8) given in [Thornton2000]:

Zm =
2C−N1

N−N0 −N1

Parameters
• cutoff – cut some relative part of the sample’s bounding box away.
• skipFree – see above.

yade.utils.bodyNumInteractionsHistogram([(tuple)aabb]) → tuple

yade.utils.bodyStressTensors([(bool)revertSign=False]) → tuple
Compute and return a table with per-particle stress tensors. Each tensor represents the average
stress in one particle, obtained from the contour integral of applied load as detailed below. This
definition is considering each sphere as a continuum. It can be considered exact in the context of
spheres at static equilibrium, interacting at contact points with negligible volume changes of the
solid phase (this last assumption is not restricting possible deformations and volume changes at
the packing scale).
Proof:
First, we remark the identity: σij = δijσij = xi,jσij = (xiσij),j − xiσij,j.
At equilibrium, the divergence of stress is null: σij,j = 0. Consequently, after divergence theorem:
1
V

∫
V
σijdV = 1

V

∫
V
(xiσij),jdV = 1

V

∫
∂V

xi.σij.nj.dS = 1
V

∑
k x

k
i .f

k
j .

The last equality is implicitely based on the representation of external loads as Dirac distributions
whose zeros are the so-called contact points: 0-sized surfaces on which the contact forces are applied,
located at xi in the deformed configuration.

2.10. yade.utils module 125

Yade Reference Documentation, Release 1st edition

A weighted average of per-body stresses will give the average stress inside the solid phase. There is
a simple relation between the stress inside the solid phase and the stress in an equivalent continuum
in the absence of fluid pressure. For porosity n, the relation reads: σequ.

ij = (1− n)σsolid
ij .

Parameters
• revertSign (bool) – invert the sign of returned tensors components.

yade.utils.box(center, extents, orientation=[, 1, 0, 0, 0], dynamic=None, fixed=False,
wire=False, color=None, highlight=False, material=-1, mask=1)

Create box (cuboid) with given parameters.
Parameters

• extents (Vector3) – half-sizes along x,y,z axes
See utils.sphere‘s documentation for meaning of other parameters.

yade.utils.chainedCylinder(begin=Vector3(0, 0, 0), end=Vector3(1, 0, 0), ra-
dius=0.20000000000000001, dynamic=None, fixed=False,
wire=False, color=None, highlight=False, material=-1, mask=1)

Create and connect a chainedCylinder with given parameters. The shape generated by repeted
calls of this function is the Minkowski sum of polyline and sphere.

Parameters
• radius (Real) – radius of sphere in the Minkowski sum.
• begin (Vector3) – first point positioning the line in the Minkowski sum
• last (Vector3) – last point positioning the line in the Minkowski sum

In order to build a correct chain, last point of element of rank N must correspond to first point of
element of rank N+1 in the same chain (with some tolerance, since bounding boxes will be used to
create connections.

Returns Body object with the ChainedCylinder shape.

yade.utils.coordsAndDisplacements((int)axis[, (tuple)Aabb=()]) → tuple
Return tuple of 2 same-length lists for coordinates and displacements (coordinate minus reference
coordinate) along given axis (1st arg); if the Aabb=((x_min,y_min,z_min),(x_max,y_max,z_-
max)) box is given, only bodies within this box will be considered.

yade.utils.createInteraction((int)id1, (int)id2) → Interaction
Create interaction between given bodies by hand.
Current engines are searched for IGeomDispatcher and IPhysDispatcher (might be both hidden
in InteractionLoop). Geometry is created using force parameter of the geometry dispatcher,
wherefore the interaction will exist even if bodies do not spatially overlap and the functor would
return false under normal circumstances.
This function will very likely behave incorrectly for periodic simulations (though it could be ex-
tended it to handle it farily easily).

yade.utils.defaultMaterial()
Return default material, when creating bodies with utils.sphere and friends, material is unspecified
and there is no shared material defined yet. By default, this function returns:
FrictMat(density=1e3,young=1e7,poisson=.3,frictionAngle=.5,label=’defaultMat’)

yade.utils.elasticEnergy((tuple)arg1) → float

yade.utils.fabricTensor([(bool)splitTensor=False[, (bool)revertSign=False[,
(float)thresholdForce=nan]]]) → tuple

Compute the fabric tensor of the periodic cell. The original paper can be found in [Satake1982].
Parameters

• splitTensor (bool) – split the fabric tensor into two parts related to the strong
and weak contact forces respectively.

126 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

• revertSign (bool) – it must be set to true if the contact law’s convention takes
compressive forces as positive.

• thresholdForce (Real) – if the fabric tensor is split into two parts, a threshold
value can be specified otherwise the mean contact force is considered by default.
It is worth to note that this value has a sign and the user needs to set it according
to the convention adopted for the contact law. To note that this value could be
set to zero if one wanted to make distinction between compressive and tensile
forces.

yade.utils.facet(vertices, dynamic=None, fixed=True, wire=True, color=None, high-
light=False, noBound=False, material=-1, mask=1)

Create facet with given parameters.
Parameters

• vertices ([Vector3,Vector3,Vector3]) – coordinates of vertices in the global co-
ordinate system.

• wire (bool) – if True, facets are shown as skeleton; otherwise facets are filled
• noBound (bool) – set Body.bounded
• color (Vector3-or-None) – color of the facet; random color will be assigned if

None.
See utils.sphere‘s documentation for meaning of other parameters.

yade.utils.flipCell([(Matrix3)flip=Matrix3(0, 0, 0, 0, 0, 0, 0, 0, 0)]) → Matrix3
Flip periodic cell so that angles between R3 axes and transformed axes are as small as possible.
This function relies on the fact that periodic cell defines by repetition or its corners regular grid of
points in R3; however, all cells generating identical grid are equivalent and can be flipped one over
another. This necessiatates adjustment of Interaction.cellDist for interactions that cross boundary
and didn’t before (or vice versa), and re-initialization of collider. The flip argument can be used
to specify desired flip: integers, each column for one axis; if zero matrix, best fit (minimizing the
angles) is computed automatically.
In c++, this function is accessible as Shop::flipCell.
This function is currently broken and should not be used.

yade.utils.forcesOnCoordPlane((float)arg1, (int)arg2) → Vector3
yade.utils.forcesOnPlane((Vector3)planePt, (Vector3)normal) → Vector3

Find all interactions deriving from NormShearPhys that cross given plane and sum forces (both
normal and shear) on them.

Parameters
• planePt (Vector3) – a point on the plane
• normal (Vector3) – plane normal (will be normalized).

yade.utils.fractionalBox(fraction=1.0, minMax=None)
retrurn (min,max) that is the original minMax box (or aabb of the whole simulation if not specified)
linearly scaled around its center to the fraction factor

yade.utils.getSpheresVolume() → float
Compute the total volume of spheres in the simulation (might crash for now if dynamic bodies are
not spheres)

yade.utils.getViscoelasticFromSpheresInteraction((float)tc, (float)en, (float)es) → dict
Compute viscoelastic interaction parameters from analytical solution of a pair spheres collision
problem:

:nowrap:

2.10. yade.utils module 127

Yade Reference Documentation, Release 1st edition

begin{align*}k_n&=frac{m}{t_c^2}left(pi^2+(ln e_n)^2right)\ c_n&=-frac{2m}{t_c}ln e_-
n \k_t&=frac27frac{m}{t_c^2}left(pi^2+(ln e_t)^2right) \ c_t=-frac27frac{m}{t_c}ln e_t
end{align*}
where kn, cn are normal elastic and viscous coefficients and kt, ct shear elastic and viscous coeffi-
cients. For details see [Pournin2001].

Parameters
• m (float) – sphere mass m
• tc (float) – collision time tc

• en (float) – normal restitution coefficient en
• es (float) – tangential restitution coefficient es

Returns dictionary with keys kn (the value of kn), cn (cn), kt (kt), ct (ct).
yade.utils.highlightNone() → None

Reset highlight on all bodies.
yade.utils.inscribedCircleCenter((Vector3)v1, (Vector3)v2, (Vector3)v3) → Vector3

Return center of inscribed circle for triangle given by its vertices v1, v2, v3.

yade.utils.interactionAnglesHistogram((int)axis[, (int)mask[, (int)bins[, (tuple)aabb]]]) →
tuple

yade.utils.kineticEnergy([(bool)findMaxId=False]) → object
Compute overall kinetic energy of the simulation as∑ 1

2

(
miv

2
i +ω(IωT)

)
.

For aspherical bodies, the inertia tensor I is transformed to global frame, before multiplied by ω,
therefore the value should be accurate.

yade.utils.loadVars(mark=None)
Load variables from utils.saveVars, which are saved inside the simulation. If mark==None, all save
variables are loaded. Otherwise only those with the mark passed.

yade.utils.makeVideo(frameSpec, out, renameNotOverwrite=True, fps=24, kbps=6000,
bps=None)

Create a video from external image files using mencoder. Two-pass encoding using the default
mencoder codec (mpeg4) is performed, running multi-threaded with number of threads equal to
number of OpenMP threads allocated for Yade.

Parameters
• frameSpec – wildcard | sequence of filenames. If list or tuple, filenames to be

encoded in given order; otherwise wildcard understood by mencoder’s mf:// URI
option (shell wildcards such as /tmp/snap-*.png or and printf-style pattern like
/tmp/snap-%05d.png)

• out (str) – file to save video into
• renameNotOverwrite (bool) – if True, existing same-named video file will have

-number appended; will be overwritten otherwise.
• fps (int) – Frames per second (-mf fps=…)
• kbps (int) – Bitrate (-lavcopts vbitrate=…) in kb/s

yade.utils.maxOverlapRatio() → float
Return maximum overlap ration in interactions (with ScGeom) of two spheres. The ratio is com-
puted as uN

2(r1r2)/r1+r2
, where uN is the current overlap distance and r1, r2 are radii of the two

spheres in contact.

128 Chapter 2. Yade modules

http://www.mplayerhq.hu

Yade Reference Documentation, Release 1st edition

yade.utils.negPosExtremeIds((int)axis[, (float)distFactor]) → tuple
Return list of ids for spheres (only) that are on extremal ends of the specimen along given axis;
distFactor multiplies their radius so that sphere that do not touch the boundary coordinate can
also be returned.

yade.utils.normalShearStressTensors([(bool)compressionPositive=False]) → tuple
Compute overall stress tensor of the periodic cell decomposed in 2 parts, one contributed by normal
forces, the other by shear forces. The formulation can be found in [Thornton2000], eq. (3):

σij =
2

V

∑
RNninj +

2

V

∑
RTnitj

where V is the cell volume, R is “contact radius” (in our implementation, current distance between
particle centroids), n is the normal vector, t is a vector perpendicular to n, N and T are norms of
normal and shear forces.

yade.utils.perpendicularArea(axis)
Return area perpendicular to given axis (0=x,1=y,2=z) generated by bodies for which the function
consider returns True (defaults to returning True always) and which is of the type Sphere.

yade.utils.plotDirections(aabb=(), mask=0, bins=20, numHist=True, noShow=False)
Plot 3 histograms for distribution of interaction directions, in yz,xz and xy planes and (optional
but default) histogram of number of interactions per body.

Returns If noShow is False, displays the figure and returns nothing. If noShow, the
figure object is returned without being displayed (works the same way as plot.plot).

yade.utils.plotNumInteractionsHistogram(cutoff=0.0)
Plot histogram with number of interactions per body, optionally cutting away cutoff relative axis-
aligned box from specimen margin.

yade.utils.pointInsidePolygon((tuple)arg1, (object)arg2) → bool

yade.utils.porosity([(float)volume=-1]) → float
Compute packing porosity V−Vs

V
where V is overall volume and Vs is volume of spheres.

Parameters
• volume (float) – overall volume which must be specified for aperiodic simula-

tions. For periodic simulations, current volume of the Cell is used.
yade.utils.ptInAABB((Vector3)arg1, (Vector3)arg2, (Vector3)arg3) → bool

Return True/False whether the point p is within box given by its min and max corners
yade.utils.randomColor()

Return random Vector3 with each component in interval 0…1 (uniform distribution)
yade.utils.randomizeColors(onlyDynamic=False)

Assign random colors to Shape::color.
If onlyDynamic is true, only dynamic bodies will have the color changed.

yade.utils.readParamsFromTable(tableFileLine=None, noTableOk=True, unknownOk=False,
**kw)

Read parameters from a file and assign them to __builtin__ variables.
The format of the file is as follows (commens starting with # and empty lines allowed):

commented lines allowed anywhere
name1 name2 … # first non-blank line are column headings

empty line is OK, with or without comment
val1 val2 … # 1st parameter set
val2 val2 … # 2nd
…

Assigned tags (the description column is synthesized if absent,see utils.TableParamReader);

2.10. yade.utils module 129

Yade Reference Documentation, Release 1st edition

O.tags[’description’]=… # assigns the description column; might be synthe-
sized O.tags[’params’]=”name1=val1,name2=val2,…” # all explicitly assigned pa-
rameters O.tags[’defaultParams’]=”unassignedName1=defaultValue1,…” # parameters
that were left at their defaults O.tags[’d.id’]=O.tags[’id’]+’.’+O.tags[’description’]
O.tags[’id.d’]=O.tags[’description’]+’.’+O.tags[’id’]

All parameters (default as well as settable) are saved using utils.saveVars('table').
Parameters

• tableFile – text file (with one value per blank-separated columns)
• tableLine (int) – number of line where to get the values from
• noTableOk (bool) – if False, raise exception if the file cannot be open; use

default values otherwise
• unknownOk (bool) – do not raise exception if unknown column name is found

in the file, and assign it as well
Returns number of assigned parameters

yade.utils.replaceCollider(colliderEngine)
Replaces collider (Collider) engine with the engine supplied. Raises error if no collider is in engines.

yade.utils.runningInBatch()
Tell whether we are running inside the batch or separately.

yade.utils.saveVars(mark=’‘, loadNow=True, **kw)
Save passed variables into the simulation so that it can be recovered when the simulation is loaded
again.
For example, variables a, b and c are defined. To save them, use:

>>> from yade import utils
>>> utils.saveVars('mark',a=1,b=2,c=3)
>>> from yade.params.mark import *
>>> a,b,c
(1, 2, 3)

those variables will be save in the .xml file, when the simulation itself is saved. To recover those
variables once the .xml is loaded again, use

>>> utils.loadVars('mark')

and they will be defined in the yade.params.mark module. The loadNow parameter calls
utils.loadVars after saving automatically.

yade.utils.scalarOnColorScale((float)arg1, (float)arg2, (float)arg3) → Vector3
yade.utils.setRefSe3() → None

Set reference positions and orientations of all bodies equal to their current positions and orienta-
tions.

yade.utils.sphere(center, radius, dynamic=None, fixed=False, wire=False, color=None, high-
light=False, material=-1, mask=1)

Create sphere with given parameters; mass and inertia computed automatically.
Last assigned material is used by default (*material*=-1), and utils.defaultMaterial() will be used
if no material is defined at all.

Parameters
• center (Vector3) – center
• radius (float) – radius
• Vector3-or-None – body’s color, as normalized RGB; random color will be

assigned if ‘‘None‘.
• material –

130 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

specify Body.material; different types are accepted:
– int: O.materials[material] will be used; as a special case, if material==-

1 and there is no shared materials defined, utils.defaultMaterial() will be
assigned to O.materials[0]

– string: label of an existing material that will be used
– Material instance: this instance will be used
– callable: will be called without arguments; returned Material value will be

used (Material factory object, if you like)
• mask (int) – Body.mask for the body

Returns A Body instance with desired characteristics.
Creating default shared material if none exists neither is given:

>>> O.reset()
>>> from yade import utils
>>> len(O.materials)
0
>>> s0=utils.sphere([2,0,0],1)
>>> len(O.materials)
1

Instance of material can be given:
>>> s1=utils.sphere([0,0,0],1,wire=False,color=(0,1,0),material=ElastMat(young=30e9,density=2e3))
>>> s1.shape.wire
False
>>> s1.shape.color
Vector3(0,1,0)
>>> s1.mat.density
2000.0

Material can be given by label:
>>> O.materials.append(FrictMat(young=10e9,poisson=.11,label='myMaterial'))
1
>>> s2=utils.sphere([0,0,2],1,material='myMaterial')
>>> s2.mat.label
'myMaterial'
>>> s2.mat.poisson
0.11

Finally, material can be a callable object (taking no arguments), which returns a Material instance.
Use this if you don’t call this function directly (for instance, through yade.pack.randomDensePack),
passing only 1 material parameter, but you don’t want material to be shared.
For instance, randomized material properties can be created like this:

>>> import random
>>> def matFactory(): return ElastMat(young=1e10*random.random(),density=1e3+1e3*random.random())
...
>>> s3=utils.sphere([0,2,0],1,material=matFactory)
>>> s4=utils.sphere([1,2,0],1,material=matFactory)

yade.utils.spiralProject((Vector3)pt, (float)dH_dTheta[, (int)axis=2[,
(float)periodStart=nan[, (float)theta0=0]]]) → tuple

yade.utils.stressTensorOfPeriodicCell([(bool)smallStrains=False]) → Matrix3
Compute overall (macroscopic) stress of periodic cell using equation published in [Kuhl2001]:

σ =
1

V

∑
c

lc[NcfcN + TcT · fcT],

2.10. yade.utils module 131

Yade Reference Documentation, Release 1st edition

where V is volume of the cell, lc length of interaction c, fcN normal force and fcT shear force. Sumed
are values over all interactions c. Nc and TcT are projection tensors (see the original publication
for more details):

N = n⊗ n → Nij = ninj

TT = Isym · n− n⊗ n⊗ n → TT
ijk =

1

2
(δikδjl + δilδjk)nl − ninjnk

TT · fT ≡ TT
ijkfk = (δiknj/2+ δjkni/2− ninjnk)fk = njfi/2+ nifj/2− ninjnkfk,

where n is unit vector oriented along the interaction (normal) and δ is Kronecker’s delta. As n

and fT are perpendicular (therfore nifi = 0) we can write

σij =
1

V

∑
l[ninjfN + njf

T
i /2+ nif

T
j /2]

Parameters
• smallStrains (bool) – if false (large strains), real values of volume and inter-

action lengths are computed. If true, only refLength of interactions and initial
volume are computed (can save some time).

Returns macroscopic stress tensor as Matrix3

yade.utils.sumFacetNormalForces((object)ids[, (int)axis=-1]) → float
Sum force magnitudes on given bodies (must have shape of the Facet type), considering only part
of forces perpendicular to each facet’s face; if axis has positive value, then the specified axis (0=x,
1=y, 2=z) will be used instead of facet’s normals.

yade.utils.sumForces((tuple)ids, (Vector3)direction) → float
Return summary force on bodies with given ids, projected on the direction vector.

yade.utils.sumTorques((tuple)ids, (Vector3)axis, (Vector3)axisPt) → float
Sum forces and torques on bodies given in ids with respect to axis specified by a point axisPt and
its direction axis.

yade.utils.totalForceInVolume() → tuple
Return summed forces on all interactions and average isotropic stiffness, as tuple (Vector3,float)

yade.utils.typedEngine(name)
Return first engine from current O.engines, identified by its type (as string). For example:

>>> from yade import utils
>>> O.engines=[InsertionSortCollider(),NewtonIntegrator(),GravityEngine()]
>>> utils.typedEngine("NewtonIntegrator") == O.engines[1]
True

yade.utils.unbalancedForce([(bool)useMaxForce=False]) → float
Compute the ratio of mean (or maximum, if useMaxForce) summary force on bodies and maximum
force magnitude on interactions. For perfectly static equilibrium, summary force on all bodies
is zero (since forces from interactions cancel out and induce no acceleration of particles); this
ratio will tend to zero as simulation stabilizes, though zero is never reached because of finite
precision computation. Sufficiently small value can be e.g. 1e-2 or smaller, depending on how
much equilibrium it should be.

yade.utils.uniaxialTestFeatures(filename=None, areaSections=10, axis=-1, **kw)
Get some data about the current packing useful for uniaxial test:

132 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

1.Find the dimensions that is the longest (uniaxial loading axis)
2.Find the minimum cross-section area of the specimen by examining several (areaSections)
sections perpendicular to axis, computing area of the convex hull for each one. This will work
also for non-prismatic specimen.

3.Find the bodies that are on the negative/positive boundary, to which the straining condition
should be applied.

Parameters
• filename – if given, spheres will be loaded from this file (ASCII format); if not,

current simulation will be used.
• areaSection (float) – number of section that will be used to estimate cross-

section
• axis (�{0,1,2}) – if given, force strained axis, rather than computing it from

predominant length
Returns dictionary with keys negIds, posIds, axis, area.

Warning: The function utils.approxSectionArea uses convex hull algorithm to find the area,
but the implementation is reported to be buggy (bot works in some cases). Always check this
number, or fix the convex hull algorithm (it is documented in the source, see py/_utils.cpp).

yade.utils.vmData()
Return memory usage data from Linux’s /proc/[pid]/status, line VmData.

yade.utils.waitIfBatch()
Block the simulation if running inside a batch. Typically used at the end of script so that it does
not finish prematurely in batch mode (the execution would be ended in such a case).

yade.utils.wall(position, axis, sense=0, color=None, material=-1, mask=1)
Return ready-made wall body.

Parameters
• position (float-or-Vector3) – center of the wall. If float, it is the position along

given axis, the other 2 components being zero
• axis (�{0,1,2}) – orientation of the wall normal (0,1,2) for x,y,z (sc. planes yz,

xz, xy)
• sense (�{-1,0,1}) – sense in which to interact (0: both, -1: negative, +1: positive;

see Wall)
See utils.sphere‘s documentation for meaning of other parameters.

yade.utils.wireAll() → None
Set Shape::wire on all bodies to True, rendering them with wireframe only.

yade.utils.wireNoSpheres() → None
Set Shape::wire to True on non-spherical bodies (Facets, Walls).

yade.utils.wireNone() → None
Set Shape::wire on all bodies to False, rendering them as solids.

yade.utils.xMirror(half)
Mirror a sequence of 2d points around the x axis (changing sign on the y coord). The sequence
should start up and then it will wrap from y downwards (or vice versa). If the last point’s x coord
is zero, it will not be duplicated.

yade._utils.PWaveTimeStep() → float
Get timestep accoring to the velocity of P-Wave propagation; computed from sphere radii, rigidities
and masses.

yade._utils.aabbExtrema([(float)cutoff=0.0[, (bool)centers=False]]) → tuple
Return coordinates of box enclosing all bodies

2.10. yade.utils module 133

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/py/_utils.cpp

Yade Reference Documentation, Release 1st edition

Parameters
• centers (bool) – do not take sphere radii in account, only their centroids
• cutoff (float�〈0…1〉) – relative dimension by which the box will be cut away at

its boundaries.
Returns (lower corner, upper corner) as (Vector3,Vector3)

yade._utils.approxSectionArea((float)arg1, (int)arg2) → float
Compute area of convex hull when when taking (swept) spheres crossing the plane at coord, per-
pendicular to axis.

yade._utils.bodyNumInteractionsHistogram([(tuple)aabb]) → tuple

yade._utils.bodyStressTensors([(bool)revertSign=False]) → tuple
Compute and return a table with per-particle stress tensors. Each tensor represents the average
stress in one particle, obtained from the contour integral of applied load as detailed below. This
definition is considering each sphere as a continuum. It can be considered exact in the context of
spheres at static equilibrium, interacting at contact points with negligible volume changes of the
solid phase (this last assumption is not restricting possible deformations and volume changes at
the packing scale).
Proof:
First, we remark the identity: σij = δijσij = xi,jσij = (xiσij),j − xiσij,j.
At equilibrium, the divergence of stress is null: σij,j = 0. Consequently, after divergence theorem:
1
V

∫
V
σijdV = 1

V

∫
V
(xiσij),jdV = 1

V

∫
∂V

xi.σij.nj.dS = 1
V

∑
k x

k
i .f

k
j .

The last equality is implicitely based on the representation of external loads as Dirac distributions
whose zeros are the so-called contact points: 0-sized surfaces on which the contact forces are applied,
located at xi in the deformed configuration.
A weighted average of per-body stresses will give the average stress inside the solid phase. There is
a simple relation between the stress inside the solid phase and the stress in an equivalent continuum
in the absence of fluid pressure. For porosity n, the relation reads: σequ.

ij = (1− n)σsolid
ij .

Parameters
• revertSign (bool) – invert the sign of returned tensors components.

yade._utils.coordsAndDisplacements((int)axis[, (tuple)Aabb=()]) → tuple
Return tuple of 2 same-length lists for coordinates and displacements (coordinate minus reference
coordinate) along given axis (1st arg); if the Aabb=((x_min,y_min,z_min),(x_max,y_max,z_-
max)) box is given, only bodies within this box will be considered.

yade._utils.createInteraction((int)id1, (int)id2) → Interaction
Create interaction between given bodies by hand.
Current engines are searched for IGeomDispatcher and IPhysDispatcher (might be both hidden
in InteractionLoop). Geometry is created using force parameter of the geometry dispatcher,
wherefore the interaction will exist even if bodies do not spatially overlap and the functor would
return false under normal circumstances.
This function will very likely behave incorrectly for periodic simulations (though it could be ex-
tended it to handle it farily easily).

yade._utils.elasticEnergy((tuple)arg1) → float

yade._utils.fabricTensor([(bool)splitTensor=False[, (bool)revertSign=False[,
(float)thresholdForce=nan]]]) → tuple

Compute the fabric tensor of the periodic cell. The original paper can be found in [Satake1982].
Parameters

• splitTensor (bool) – split the fabric tensor into two parts related to the strong
and weak contact forces respectively.

134 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

• revertSign (bool) – it must be set to true if the contact law’s convention takes
compressive forces as positive.

• thresholdForce (Real) – if the fabric tensor is split into two parts, a threshold
value can be specified otherwise the mean contact force is considered by default.
It is worth to note that this value has a sign and the user needs to set it according
to the convention adopted for the contact law. To note that this value could be
set to zero if one wanted to make distinction between compressive and tensile
forces.

yade._utils.flipCell([(Matrix3)flip=Matrix3(0, 0, 0, 0, 0, 0, 0, 0, 0)]) → Matrix3
Flip periodic cell so that angles between R3 axes and transformed axes are as small as possible.
This function relies on the fact that periodic cell defines by repetition or its corners regular grid of
points in R3; however, all cells generating identical grid are equivalent and can be flipped one over
another. This necessiatates adjustment of Interaction.cellDist for interactions that cross boundary
and didn’t before (or vice versa), and re-initialization of collider. The flip argument can be used
to specify desired flip: integers, each column for one axis; if zero matrix, best fit (minimizing the
angles) is computed automatically.
In c++, this function is accessible as Shop::flipCell.
This function is currently broken and should not be used.

yade._utils.forcesOnCoordPlane((float)arg1, (int)arg2) → Vector3
yade._utils.forcesOnPlane((Vector3)planePt, (Vector3)normal) → Vector3

Find all interactions deriving from NormShearPhys that cross given plane and sum forces (both
normal and shear) on them.

Parameters
• planePt (Vector3) – a point on the plane
• normal (Vector3) – plane normal (will be normalized).

yade._utils.getSpheresVolume() → float
Compute the total volume of spheres in the simulation (might crash for now if dynamic bodies are
not spheres)

yade._utils.getViscoelasticFromSpheresInteraction((float)tc, (float)en, (float)es) → dict
Compute viscoelastic interaction parameters from analytical solution of a pair spheres collision
problem:

:nowrap:
begin{align*}k_n&=frac{m}{t_c^2}left(pi^2+(ln e_n)^2right)\ c_n&=-frac{2m}{t_c}ln e_-
n \k_t&=frac27frac{m}{t_c^2}left(pi^2+(ln e_t)^2right) \ c_t=-frac27frac{m}{t_c}ln e_t
end{align*}
where kn, cn are normal elastic and viscous coefficients and kt, ct shear elastic and viscous coeffi-
cients. For details see [Pournin2001].

Parameters
• m (float) – sphere mass m
• tc (float) – collision time tc

• en (float) – normal restitution coefficient en
• es (float) – tangential restitution coefficient es

Returns dictionary with keys kn (the value of kn), cn (cn), kt (kt), ct (ct).
yade._utils.highlightNone() → None

Reset highlight on all bodies.
yade._utils.inscribedCircleCenter((Vector3)v1, (Vector3)v2, (Vector3)v3) → Vector3

Return center of inscribed circle for triangle given by its vertices v1, v2, v3.

2.10. yade.utils module 135

Yade Reference Documentation, Release 1st edition

yade._utils.interactionAnglesHistogram((int)axis[, (int)mask[, (int)bins[, (tuple)aabb]]])→ tuple

yade._utils.kineticEnergy([(bool)findMaxId=False]) → object
Compute overall kinetic energy of the simulation as∑ 1

2

(
miv

2
i +ω(IωT)

)
.

For aspherical bodies, the inertia tensor I is transformed to global frame, before multiplied by ω,
therefore the value should be accurate.

yade._utils.maxOverlapRatio() → float
Return maximum overlap ration in interactions (with ScGeom) of two spheres. The ratio is com-
puted as uN

2(r1r2)/r1+r2
, where uN is the current overlap distance and r1, r2 are radii of the two

spheres in contact.

yade._utils.negPosExtremeIds((int)axis[, (float)distFactor]) → tuple
Return list of ids for spheres (only) that are on extremal ends of the specimen along given axis;
distFactor multiplies their radius so that sphere that do not touch the boundary coordinate can
also be returned.

yade._utils.normalShearStressTensors([(bool)compressionPositive=False]) → tuple
Compute overall stress tensor of the periodic cell decomposed in 2 parts, one contributed by normal
forces, the other by shear forces. The formulation can be found in [Thornton2000], eq. (3):

σij =
2

V

∑
RNninj +

2

V

∑
RTnitj

where V is the cell volume, R is “contact radius” (in our implementation, current distance between
particle centroids), n is the normal vector, t is a vector perpendicular to n, N and T are norms of
normal and shear forces.

yade._utils.pointInsidePolygon((tuple)arg1, (object)arg2) → bool

yade._utils.porosity([(float)volume=-1]) → float
Compute packing porosity V−Vs

V
where V is overall volume and Vs is volume of spheres.

Parameters
• volume (float) – overall volume which must be specified for aperiodic simula-

tions. For periodic simulations, current volume of the Cell is used.
yade._utils.ptInAABB((Vector3)arg1, (Vector3)arg2, (Vector3)arg3) → bool

Return True/False whether the point p is within box given by its min and max corners
yade._utils.scalarOnColorScale((float)arg1, (float)arg2, (float)arg3) → Vector3
yade._utils.setRefSe3() → None

Set reference positions and orientations of all bodies equal to their current positions and orienta-
tions.

yade._utils.spiralProject((Vector3)pt, (float)dH_dTheta[, (int)axis=2[,
(float)periodStart=nan[, (float)theta0=0]]]) → tuple

yade._utils.stressTensorOfPeriodicCell([(bool)smallStrains=False]) → Matrix3
Compute overall (macroscopic) stress of periodic cell using equation published in [Kuhl2001]:

σ =
1

V

∑
c

lc[NcfcN + TcT · fcT],

136 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

where V is volume of the cell, lc length of interaction c, fcN normal force and fcT shear force. Sumed
are values over all interactions c. Nc and TcT are projection tensors (see the original publication
for more details):

N = n⊗ n → Nij = ninj

TT = Isym · n− n⊗ n⊗ n → TT
ijk =

1

2
(δikδjl + δilδjk)nl − ninjnk

TT · fT ≡ TT
ijkfk = (δiknj/2+ δjkni/2− ninjnk)fk = njfi/2+ nifj/2− ninjnkfk,

where n is unit vector oriented along the interaction (normal) and δ is Kronecker’s delta. As n

and fT are perpendicular (therfore nifi = 0) we can write

σij =
1

V

∑
l[ninjfN + njf

T
i /2+ nif

T
j /2]

Parameters
• smallStrains (bool) – if false (large strains), real values of volume and inter-

action lengths are computed. If true, only refLength of interactions and initial
volume are computed (can save some time).

Returns macroscopic stress tensor as Matrix3

yade._utils.sumFacetNormalForces((object)ids[, (int)axis=-1]) → float
Sum force magnitudes on given bodies (must have shape of the Facet type), considering only part
of forces perpendicular to each facet’s face; if axis has positive value, then the specified axis (0=x,
1=y, 2=z) will be used instead of facet’s normals.

yade._utils.sumForces((tuple)ids, (Vector3)direction) → float
Return summary force on bodies with given ids, projected on the direction vector.

yade._utils.sumTorques((tuple)ids, (Vector3)axis, (Vector3)axisPt) → float
Sum forces and torques on bodies given in ids with respect to axis specified by a point axisPt and
its direction axis.

yade._utils.totalForceInVolume() → tuple
Return summed forces on all interactions and average isotropic stiffness, as tuple (Vector3,float)

yade._utils.unbalancedForce([(bool)useMaxForce=False]) → float
Compute the ratio of mean (or maximum, if useMaxForce) summary force on bodies and maximum
force magnitude on interactions. For perfectly static equilibrium, summary force on all bodies
is zero (since forces from interactions cancel out and induce no acceleration of particles); this
ratio will tend to zero as simulation stabilizes, though zero is never reached because of finite
precision computation. Sufficiently small value can be e.g. 1e-2 or smaller, depending on how
much equilibrium it should be.

yade._utils.wireAll() → None
Set Shape::wire on all bodies to True, rendering them with wireframe only.

yade._utils.wireNoSpheres() → None
Set Shape::wire to True on non-spherical bodies (Facets, Walls).

yade._utils.wireNone() → None
Set Shape::wire on all bodies to False, rendering them as solids.

2.10. yade.utils module 137

Yade Reference Documentation, Release 1st edition

2.11 yade.ymport module

Import geometry from various formats (‘import’ is python keyword, hence the name ‘ymport’).
yade.ymport.gengeo(mntable, shift=Vector3(0, 0, 0), scale=1.0, **kw)

Imports geometry from LSMGenGeo library and creates spheres.
Parameters

mntable: mntable object, which creates by LSMGenGeo library, see example
shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.
**kw: (unused keyword arguments) is passed to utils.sphere

LSMGenGeo library allows to create pack of spheres with given [Rmin:Rmax] with null stress inside
the specimen. Can be useful for Mining Rock simulation.
Example: examples/regular-sphere-pack/regular-sphere-pack.py, usage of LSMGenGeo library in
scripts/test/genCylLSM.py.

•https://answers.launchpad.net/esys-particle/+faq/877
•http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-
module.html

•https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
yade.ymport.gengeoFile(fileName=’file.geo’, shift=Vector3(0, 0, 0), scale=1.0, orienta-

tion=Quaternion((1, 0, 0), 0), **kw)
Imports geometry from LSMGenGeo .geo file and creates spheres.

Parameters
filename: string file which has 4 colums [x, y, z, radius].
shift: Vector3 Vector3(X,Y,Z) parameter moves the specimen.
scale: float factor scales the given data.
orientation: quaternion orientation of the imported geometry
**kw: (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
LSMGenGeo library allows to create pack of spheres with given [Rmin:Rmax] with null stress inside
the specimen. Can be useful for Mining Rock simulation.
Example: examples/regular-sphere-pack/regular-sphere-pack.py, usage of LSMGenGeo library in
scripts/test/genCylLSM.py.

•https://answers.launchpad.net/esys-particle/+faq/877
•http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-
module.html

•https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
yade.ymport.gmsh(meshfile=’file.mesh’, shift=Vector3(0, 0, 0), scale=1.0, orienta-

tion=Quaternion((1, 0, 0), 0), **kw)
Imports geometry from mesh file and creates facets.

Parameters
shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.
orientation: quaternion orientation of the imported mesh
**kw: (unused keyword arguments) is passed to utils.facet

Returns list of facets forming the specimen.

138 Chapter 2. Yade modules

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/regular-sphere-pack/regular-sphere-pack.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/genCylLSM.py
https://answers.launchpad.net/esys-particle/+faq/877
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/regular-sphere-pack/regular-sphere-pack.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/genCylLSM.py
https://answers.launchpad.net/esys-particle/+faq/877
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/

Yade Reference Documentation, Release 1st edition

mesh files can be easily created with GMSH. Example added to examples/regular-sphere-
pack/regular-sphere-pack.py
Additional examples of mesh-files can be downloaded from http://www-
roc.inria.fr/gamma/download/download.php

yade.ymport.gts(meshfile, shift=(0, 0, 0), scale=1.0, **kw)
Read given meshfile in gts format.

Parameters
meshfile: string name of the input file.
shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.
**kw: (unused keyword arguments) is passed to utils.facet

Returns list of facets.
yade.ymport.stl(file, dynamic=None, fixed=True, wire=True, color=None, highlight=False,

noBound=False, material=-1)
Import geometry from stl file, return list of created facets.

yade.ymport.text(fileName, shift=Vector3(0, 0, 0), scale=1.0, **kw)
Load sphere coordinates from file, create spheres, insert them to the simulation.

Parameters
filename: string file which has 4 colums [x, y, z, radius].
shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.
**kw: (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
Lines starting with # are skipped

yade.ymport.textExt(fileName, format=’x_y_z_r’, shift=Vector3(0, 0, 0), scale=1.0, **kw)
Load sphere coordinates from file in specific format, create spheres, insert them to the simulation.

Parameters filename: string format:
the name of output format. Supported x_y_z_r‘(default), ‘x_y_z_r_matId

shift: [float,float,float] [X,Y,Z] parameter moves the specimen.
scale: float factor scales the given data.
**kw: (unused keyword arguments) is passed to utils.sphere

Returns list of spheres.
Lines starting with # are skipped

2.11. yade.ymport module 139

http://www.geuz.org/gmsh/
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/regular-sphere-pack/regular-sphere-pack.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/regular-sphere-pack/regular-sphere-pack.py
http://www-roc.inria.fr/gamma/download/download.php
http://www-roc.inria.fr/gamma/download/download.php

Yade Reference Documentation, Release 1st edition

140 Chapter 2. Yade modules

Chapter 3

External modules

3.1 miniEigen (math) module

Basic math functions for Yade: small matrix, vector and quaternion classes. This module internally
wraps small parts of the Eigen library. Refer to its documentation for details. All classes in this module
support pickling.
class miniEigen.Matrix3

3x3 float matrix.
Supported operations (m is a Matrix3, f if a float/int, v is a Vector3): -m, m+m, m+=m, m-m, m-=m,
m*f, f*m, m*=f, m/f, m/=f, m*m, m*=m, m*v, v*m, m==m, m!=m.
__init__() → None

__init__((Matrix3)m) → None
__init__((float)m00, (float)m01, (float)m02, (float)m10, (float)m11, (float)m12, (float)m20,
(float)m21, (float)m22) → object

col((int)arg2) → Vector3
determinant() → float
diagonal() → Vector3
inverse() → Matrix3
polarDecomposition() → tuple
row((int)arg2) → Vector3

toVoigt([(bool)strain=False]) → Vector6
Convert 2nd order tensor to 6-vector (Voigt notation), symmetrizing the tensor; if strain is
True, multiply non-diagonal compoennts by 2.

trace() → float
transpose() → Matrix3

class miniEigen.Quaternion
Quaternion representing rotation.
Supported operations (q is a Quaternion, v is a Vector3): q*q (rotation composition), q*=q, q*v
(rotating v by q), q==q, q!=q.
Rotate((Vector3)v) → Vector3
__init__() → None

__init__((Vector3)axis, (float)angle) → object
__init__((float)angle, (Vector3)axis) → object

141

http://eigen.tuxfamily.org

Yade Reference Documentation, Release 1st edition

__init__((float)w, (float)x, (float)y, (float)z) → None : Initialize from coefficients.
Note: The order of coefficients is w, x, y, z. The [] operator numbers them differently,
0…4 for x y z w!

__init__((Quaternion)other) → None
conjugate() → Quaternion
inverse() → Quaternion
norm() → float
normalize() → None
setFromTwoVectors((Vector3)u, (Vector3)v) → Quaternion
toAngleAxis() → tuple
toAxisAngle() → tuple
toRotationMatrix() → Matrix3

class miniEigen.Vector2
3-dimensional float vector.
Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.
Implicit conversion from sequence (list,tuple, …) of 2 floats.
__init__() → None

__init__((Vector2)other) → None
__init__((float)x, (float)y) → None

dot((Vector2)arg2) → float
norm() → float
normalize() → None
squaredNorm() → float

class miniEigen.Vector2i
2-dimensional integer vector.
Supported operations (i if an int, v is a Vector2i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i, v==v,
v!=v.
Implicit conversion from sequence (list,tuple, …) of 2 integers.
__init__() → None

__init__((Vector2i)other) → None
__init__((int)x, (int)y) → None

dot((Vector2i)arg2) → float
norm() → int
normalize() → None
squaredNorm() → int

class miniEigen.Vector3
3-dimensional float vector.
Supported operations (f if a float/int, v is a Vector3): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v, plus operations with Matrix3 and Quaternion.
Implicit conversion from sequence (list,tuple, …) of 3 floats.
__init__() → None

__init__((Vector3)other) → None
__init__((float)x, (float)y, (float)z) → None

142 Chapter 3. External modules

Yade Reference Documentation, Release 1st edition

cross((Vector3)arg2) → Vector3
dot((Vector3)arg2) → float
norm() → float
normalize() → None
normalized() → Vector3
squaredNorm() → float

class miniEigen.Vector3i
3-dimensional integer vector.
Supported operations (i if an int, v is a Vector3i): -v, v+v, v+=v, v-v, v-=v, v*i, i*v, v*=i, v==v,
v!=v.
Implicit conversion from sequence (list,tuple, …) of 3 integers.
__init__() → None

__init__((Vector3i)other) → None
__init__((int)x, (int)y, (int)z) → None

cross((Vector3i)arg2) → Vector3i
dot((Vector3i)arg2) → float
norm() → int
squaredNorm() → int

class miniEigen.Vector6
6-dimensional float vector.
Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.
Implicit conversion from sequence (list,tuple, …) of 6 floats.
__init__() → None

__init__((Vector6)other) → None
__init__((float)v0, (float)v1, (float)v2, (float)v3, (float)v4, (float)v5) → object

head() → Vector3
norm() → float
normalize() → None
normalized() → Vector6
squaredNorm() → float
tail() → Vector3
toSymmTensor([(bool)strain=False]) → Matrix3

Convert Vector6 in the Voigt notation to the corresponding 2nd order symmetric tensor (as
Matrix3); if strain is True, multiply non-diagonal components by .5

class miniEigen.Vector6i
6-dimensional float vector.
Supported operations (f if a float/int, v is a Vector6): -v, v+v, v+=v, v-v, v-=v, v*f, f*v, v*=f,
v/f, v/=f, v==v, v!=v.
Implicit conversion from sequence (list,tuple, …) of 6 floats.
__init__() → None

__init__((Vector6i)other) → None
__init__((int)v0, (int)v1, (int)v2, (int)v3, (int)v4, (int)v5) → object

head() → Vector3i

3.1. miniEigen (math) module 143

Yade Reference Documentation, Release 1st edition

norm() → int
normalize() → None
normalized() → Vector6i
squaredNorm() → int
tail() → Vector3i

3.2 gts (GNU Triangulated surface) module

A package for constructing and manipulating triangulated surfaces.
PyGTS is a python binding for the GNU Triangulated Surface (GTS) Library, which may be used to
build, manipulate, and perform computations on triangulated surfaces.
The following geometric primitives are provided:

Point - a point in 3D space Vertex - a Point in 3D space that may be used to define a Segment
Segment - a line defined by two Vertex end-points Edge - a Segment that may be used to
define the edge of a Triangle Triangle - a triangle defined by three Edges Face - a Triangle
that may be used to define a face on a Surface Surface - a surface composed of Faces

A tetrahedron is assembled from these primitives as follows. First, create Vertices for each of the
tetrahedron’s points:

import gts
v1 = gts.Vertex(1,1,1) v2 = gts.Vertex(-1,-1,1) v3 = gts.Vertex(-1,1,-1) v4 = gts.Vertex(1,-
1,-1)

Next, connect the four vertices to create six unique Edges:
e1 = gts.Edge(v1,v2) e2 = gts.Edge(v2,v3) e3 = gts.Edge(v3,v1) e4 = gts.Edge(v1,v4) e5 =
gts.Edge(v4,v2) e6 = gts.Edge(v4,v3)

The four triangular faces are composed using three edges each:
f1 = gts.Face(e1,e2,e3) f2 = gts.Face(e1,e4,e5) f3 = gts.Face(e2,e5,e6) f4 = gts.Face(e3,e4,e6)

Finally, the surface is assembled from the faces:
s = gts.Surface() for face in [f1,f2,f3,f4]:

s.add(face)
Some care must be taken in the orientation of the faces. In the above example, the surface normals are
pointing inward, and so the surface technically defines a void, rather than a solid. To create a tetrahedron
with surface normals pointing outward, use the following instead:

f1.revert() s = Surface() for face in [f1,f2,f3,f4]:
if not face.is_compatible(s): face.revert()
s.add(face)

Once the Surface is constructed, there are many different operations that can be performed. For example,
the volume can be calculated using:

s.volume()
The difference between two Surfaces s1 and s2 is given by:

s3 = s2.difference(s1)
Etc.
It is also possible to read in GTS data files and plot surfaces to the screen. See the example programs
packaged with PyGTS for more information.

144 Chapter 3. External modules

Yade Reference Documentation, Release 1st edition

class gts.Edge(inherits Segment → Object → object)
Bases: gts.Segment
Edge object
__init__

x.__init__(...) initializes x; see x.__class__.__doc__ for signature
belongs_to_tetrahedron

Returns True if this Edge e belongs to a tetrahedron. Otherwise False.
Signature: e.belongs_to_tetrahedron()

contacts
Returns number of sets of connected triangles share this Edge e as a contact Edge.
Signature: e.contacts()

face_number
Returns number of faces using this Edge e on Surface s.
Signature: e.face_number(s)

is_boundary
Returns True if this Edge e is a boundary on Surface s. Otherwise False.
Signature: e.is_boundary(s)

is_ok
True if this Edge e is not degenerate or duplicate. False otherwise. Degeneracy implies e.v1.id
== e.v2.id.
Signature: e.is_ok()

is_unattached
True if this Edge e is not part of any Triangle.
Signature: e.is_unattached()

class gts.Face(inherits Triangle → Object → object)
Bases: gts.Triangle
Face object
__init__

x.__init__(...) initializes x; see x.__class__.__doc__ for signature
is_compatible

True if Face f is compatible with all neighbors in Surface s. False otherwise.
Signature: f.is_compatible(s).

is_ok
True if this Face f is non-degenerate and non-duplicate. False otherwise.
Signature: f.is_ok()

is_on
True if this Face f is on Surface s. False otherwise.
Signature: f.is_on(s).

is_unattached
True if this Face f is not part of any Surface.
Signature: f.is_unattached().

neighbor_number
Returns the number of neighbors of Face f belonging to Surface s.
Signature: f.neighbor_number(s).

3.2. gts (GNU Triangulated surface) module 145

Yade Reference Documentation, Release 1st edition

neighbors
Returns a tuple of neighbors of this Face f belonging to Surface s.
Signature: f.neighbors(s).

class gts.Object(inherits object)
Bases: object
Base object
__init__

x.__init__(...) initializes x; see x.__class__.__doc__ for signature
id

GTS object id
is_unattached

True if this Object o is not attached to another Object. Otherwise False.
Trace: o.is_unattached().

class gts.Point(inherits Object → object)
Bases: gts.Object
Point object
__init__

x.__init__(...) initializes x; see x.__class__.__doc__ for signature
closest

Set the coordinates of Point p to the Point on Segment s or Triangle t closest to the Point p2
Signature: p.closest(s,p2) or p.closest(t,p2)
Returns the (modified) Point p.

coords
Returns a tuple of the x, y, and z coordinates for this Point p.
Signature: p.coords(x,y,z)

distance
Returns Euclidean distance between this Point p and other Point p2, Segment s, or Triangle
t. Signature: p.distance(p2), p.distance(s) or p.distance(t)

distance2
Returns squared Euclidean distance between Point p and Point p2, Segment s, or Triangle t.
Signature: p.distance2(p2), p.distance2(s), or p.distance2(t)

is_in
Tests if this Point p is inside or outside Triangle t. The planar projection (x,y) of Point p is
tested against the planar projection of Triangle t.
Signature: p.in_circle(p1,p2,p3) or p.in_circle(t)
Returns a +1 if p lies inside, -1 if p lies outside, and 0 if p lies on the triangle.

is_in_circle
Tests if this Point p is inside or outside circumcircle. The planar projection (x,y) of Point
p is tested against the circumcircle defined by the planar projection of p1, p2 and p3, or
alternatively the Triangle t
Signature: p.in_circle(p1,p2,p3) or p.in_circle(t)
Returns +1 if p lies inside, -1 if p lies outside, and 0 if p lies on the circle. The Points p1, p2,
and p3 must be in counterclockwise order, or the sign of the result will be reversed.

is_in_rectangle
True if this Point p is in box with bottom-left and upper-right Points p1 and p2.
Signature: p.is_in_rectange(p1,p2)

146 Chapter 3. External modules

Yade Reference Documentation, Release 1st edition

is_inside
True if this Point p is inside or outside Surface s. False otherwise.
Signature: p.in_inside(s)

is_ok
True if this Point p is OK. False otherwise. This method is useful for unit testing and
debugging.
Signature: p.is_ok().

orientation_3d
Determines if this Point p is above, below or on plane of 3 Points p1, p2 and p3.
Signature: p.orientation_3d(p1,p2,p3)
Below is defined so that p1, p2 and p3 appear in counterclockwise order when viewed from
above the plane.
The return value is positive if p4 lies below the plane, negative if p4 lies above the plane, and
zero if the four points are coplanar. The value is an approximation of six times the signed
volume of the tetrahedron defined by the four points.

orientation_3d_sos
Determines if this Point p is above, below or on plane of 3 Points p1, p2 and p3.
Signature: p.orientation_3d_sos(p1,p2,p3)
Below is defined so that p1, p2 and p3 appear in counterclockwise order when viewed from
above the plane.
The return value is +1 if p4 lies below the plane, and -1 if p4 lies above the plane. Simulation
of Simplicity (SoS) is used to break ties when the orientation is degenerate (i.e. the point lies
on the plane definedby p1, p2 and p3).

rotate
Rotates Point p around vector dx,dy,dz by angle a. The sense of the rotation is given by the
right-hand-rule.
Signature: p.rotate(dx=0,dy=0,dz=0,a=0)

scale
Scales Point p by vector dx,dy,dz.
Signature: p.scale(dx=1,dy=1,dz=1)

set
Sets x, y, and z coordinates of this Point p.
Signature: p.set(x,y,z)

translate
Translates Point p by vector dx,dy,dz.
Signature: p.translate(dx=0,dy=0,dz=0)

x
x value

y
y value

z
z value

class gts.Segment(inherits Object → object)
Bases: gts.Object
Segment object
__init__

x.__init__(...) initializes x; see x.__class__.__doc__ for signature

3.2. gts (GNU Triangulated surface) module 147

Yade Reference Documentation, Release 1st edition

connects
Returns True if this Segment s1 connects Vertices v1 and v2. False otherwise.
Signature: s1.connects(v1,v2).

intersection
Returns the intersection of Segment s with Triangle t
This function is geometrically robust in the sense that it will return None if s and t do not
intersect and will return a Vertex if they do. However, the point coordinates are subject to
round-off errors. None will be returned if s is contained in the plane defined by t.
Signature: s.intersection(t) or s.intersection(t,boundary).
If boundary is True (default), the boundary of s is taken into account.
Returns a summit of t (if boundary is True), one of the endpoints of s, a new Vertex at the
intersection of s with t, or None if s and t don’t intersect.

intersects
Checks if this Segment s1 intersects with Segment s2. Returns 1 if they intersect, 0 if an
endpoint of one Segment lies on the other Segment, -1 otherwise
Signature: s1.intersects(s2).

is_ok
True if this Segment s is not degenerate or duplicate. False otherwise. Degeneracy implies
s.v1.id == s.v2.id.
Signature: s.is_ok().

midvertex
Returns a new Vertex at the mid-point of this Segment s.
Signature: s.midvertex().

touches
Returns True if this Segment s1 touches Segment s2 (i.e., they share a common Vertex). False
otherwise.
Signature: s1.touches(s2).

v1
Vertex 1

v2
Vertex 2

class gts.Surface(inherits Object → object)
Bases: gts.Object
Surface object
Nedges

The number of unique edges
Nfaces

The number of unique faces
Nvertices

The number of unique vertices
__init__

x.__init__(...) initializes x; see x.__class__.__doc__ for signature
add

Adds a Face f or Surface s2 to Surface s1.
Signature: s1.add(f) or s2.add(f)

area
Returns the area of Surface s. The area is taken as the sum of the signed areas of the Faces
of s.

148 Chapter 3. External modules

Yade Reference Documentation, Release 1st edition

Signature: s.area()
boundary

Returns a tuple of boundary Edges of Surface s.
Signature: s.boundary()

center_of_area
Returns the coordinates of the center of area of Surface s.
Signature: s.center_of_area()

center_of_mass
Returns the coordinates of the center of mass of Surface s.
Signature: s.center_of_mass()

cleanup
Cleans up the Vertices, Edges, and Faces on a Surface s.
Signature: s.cleanup() or s.cleanup(threhold)
If threhold is given, then Vertices that are spaced less than the threshold are merged. Degen-
erate Edges and Faces are also removed.

coarsen
Reduces the number of vertices on Surface s.
Signature: s.coarsen(n) and s.coarsen(amin)
n is the smallest number of desired edges (but you may get fewer). amin is the smallest angle
between Faces.

copy
Copys all Faces, Edges and Vertices of Surface s2 to Surface s1.
Signature: s1.copy(s2)
Returns s1.

difference
Returns the difference of this Surface s1 with Surface s2.
Signature: s1.difference(s2)

distance
Calculates the distance between the faces of this Surface s1 and the nearest Faces of other
s2, and (if applicable) the distance between the boundary of this Surface s1 and the nearest
boundary Edges of other s2.
One or two dictionaries are returned (where applicable), the first for the face range and the
second for the boundary range. The fields in each dictionary describe statistical results for
each population: {min,max,sum,sum2,mean,stddev,n}.
Signature: s1.distance(s2) or s1.distance(s2,delta)
The value delta is a spatial increment defined as the percentage of the diagonal of the bounding
box of s2 (default 0.1).

edges
Returns tuple of Edges on Surface s that have Vertex in list. If a list is not given then all of
the Edges are returned.
Signature: s.edges(list) or s.edges()

face_indices
Returns a tuple of 3-tuples containing Vertex indices for each Face in Surface s. The index
for each Vertex in a face corresponds to where it is found in the Vertex tuple vs.
Signature: s.face_indices(vs)

3.2. gts (GNU Triangulated surface) module 149

Yade Reference Documentation, Release 1st edition

faces
Returns tuple of Faces on Surface s that have Edge in list. If a list is not given then all of the
Faces are returned.
Signature: s.faces(list) s.faces()

fan_oriented
Returns a tuple of outside Edges of the Faces fanning from Vertex v on this Surface s. The
Edges are given in counter-clockwise order.
Signature: s.fan_oriented(v)

intersection
Returns the intersection of this Surface s1 with Surface s2.
Signature: s1.intersection(s2)

is_closed
True if Surface s is closed, False otherwise. Note that a closed Surface is also a manifold.
Signature: s.is_closed()

is_manifold
True if Surface s is a manifold, False otherwise.
Signature: s.is_manifold()

is_ok
True if this Surface s is OK. False otherwise.
Signature: s.is_ok()

is_orientable
True if Faces in Surface s have compatible orientation, False otherwise. Note that a closed
surface is also a manifold. Note that an orientable surface is also a manifold.
Signature: s.is_orientable()

is_self_intersecting
Returns True if this Surface s is self-intersecting. False otherwise.
Signature: s.is_self_intersecting()

manifold_faces
Returns the 2 manifold Faces of Edge e on this Surface s if they exist, or None.
Signature: s.manifold_faces(e)

next
x.next() -> the next value, or raise StopIteration

parent
Returns Face on this Surface s that has Edge e, or None if the Edge is not on this Surface.
Signature: s.parent(e)

quality_stats
Returns quality statistics for this Surface f in a dict. The statistics include the {min, max,
sum, sum2, mean, stddev, and n} for populations of face_quality, face_area, edge_length,
and edge_angle. Each of these names are dictionary keys. See Triangle.quality() for an
explanation of the face_quality.
Signature: s.quality_stats()

remove
Removes Face f from this Surface s.
Signature: s.remove(f)

rotate
Rotates Surface s about vector dx,dy,dz and angle a. The sense of the rotation is given by
the right-hand-rule.

150 Chapter 3. External modules

Yade Reference Documentation, Release 1st edition

Signature: s.rotate(dx,dy,dz,a)
scale

Scales Surface s by vector dx,dy,dz.
Signature: s.scale(dx=1,dy=1,dz=1)

split
Splits a surface into a tuple of connected and manifold components.
Signature: s.split()

stats
Returns statistics for this Surface f in a dict. The stats include n_faces, n_incompatible_-
faces„ n_boundary_edges, n_non_manifold_edges, and the statisics {min, max, sum, sum2,
mean, stddev, and n} for populations of edges_per_vertex and faces_per_edge. Each of
these names are dictionary keys.
Signature: s.stats()

strip
Returns a tuple of strips, where each strip is a tuple of Faces that are successive and have one
edge in common.
Signature: s.split()

tessellate
Tessellate each face of this Surface s with 4 triangles. The number of triangles is increased by
a factor of 4.
Signature: s.tessellate()

translate
Translates Surface s by vector dx,dy,dz.
Signature: s.translate(dx=0,dy=0,dz=0)

union
Returns the union of this Surface s1 with Surface s2.
Signature: s1.union(s2)

vertices
Returns a tuple containing the vertices of Surface s.
Signature: s.vertices()

volume
Returns the signed volume of the domain bounded by the Surface s.
Signature: s.volume()

write
Saves Surface s to File f in GTS ascii format. All the lines beginning with #! are ignored.
Signature: s.write(f)

write_oogl
Saves Surface s to File f in OOGL (Geomview) format.
Signature: s.write_oogl(f)

write_oogl_boundary
Saves boundary of Surface s to File f in OOGL (Geomview) format.
Signature: s.write_oogl_boundary(f)

write_vtk
Saves Surface s to File f in VTK format.
Signature: s.write_vtk(f)

3.2. gts (GNU Triangulated surface) module 151

Yade Reference Documentation, Release 1st edition

class gts.Triangle(inherits Object → object)
Bases: gts.Object
Triangle object
__init__

x.__init__(...) initializes x; see x.__class__.__doc__ for signature
angle

Returns the angle (radians) between Triangles t1 and t2
Signature: t1.angle(t2)

area
Returns the area of Triangle t.
Signature: t.area()

circumcenter
Returns a Vertex at the center of the circumscribing circle of this Triangle t, or None if the
circumscribing circle is not defined.
Signature: t.circumcircle_center()

common_edge
Returns Edge common to both this Triangle t1 and other t2. Returns None if the triangles
do not share an Edge.
Signature: t1.common_edge(t2)

e1
Edge 1

e2
Edge 2

e3
Edge 3

interpolate_height
Returns the height of the plane defined by Triangle t at Point p. Only the x- and y-coordinates
of p are considered.
Signature: t.interpolate_height(p)

is_compatible
True if this triangle t1 and other t2 are compatible; otherwise False.
Checks if this triangle t1 and other t2, which share a common Edge, can be part of the same
surface without conflict in the surface normal orientation.
Signature: t1.is_compatible(t2)

is_ok
True if this Triangle t is non-degenerate and non-duplicate. False otherwise.
Signature: t.is_ok()

is_stabbed
Returns the component of this Triangle t that is stabbed by a ray projecting from Point p to
z=infinity. The result can be this Triangle t, one of its Edges or Vertices, or None. If the ray
is contained in the plan of this Triangle then None is also returned.
Signature: t.is_stabbed(p)

normal
Returns a tuple of coordinates of the oriented normal of Triangle t as the cross-product of
two edges, using the left-hand rule. The normal is not normalized. If this triangle is part of
a closed and oriented surface, the normal points to the outside of the surface.
Signature: t.normal()

152 Chapter 3. External modules

Yade Reference Documentation, Release 1st edition

opposite
Returns Vertex opposite to Edge e or Edge opposite to Vertex v for this Triangle t.
Signature: t.opposite(e) or t.opposite(v)

orientation
Determines orientation of the plane (x,y) projection of Triangle t
Signature: t.orientation()
Returns a positive value if Points p1, p2 and p3 in Triangle t appear in counterclockwise order,
a negative value if they appear in clockwise order and zero if they are colinear.

perimeter
Returns the perimeter of Triangle t.
Signature: t.perimeter()

quality
Returns the quality of Triangle t.
The quality of a triangle is defined as the ratio of the square root of its surface area to its
perimeter relative to this same ratio for an equilateral triangle with the same area. The
quality is then one for an equilateral triangle and tends to zero for a very stretched triangle.
Signature: t.quality()

revert
Changes the orientation of triangle t, turning it inside out.
Signature: t.revert()

vertex
Returns the Vertex of this Triangle t not in t.e1.
Signature: t.vertex()

vertices
Returns the three oriented set of vertices in Triangle t.
Signature: t.vertices()

class gts.Vertex(inherits Point → Object → object)
Bases: gts.Point
Vertex object
__init__

x.__init__(...) initializes x; see x.__class__.__doc__ for signature
contacts

Returns the number of sets of connected Triangles sharing this Vertex v.
Signature: v.contacts().
If sever is True (default: False) and v is a contact vertex then the vertex is replaced in each
Triangle with clones.

encroaches
Returns True if this Vertex v is strictly contained in the diametral circle of Edge e. False
otherwise.
Only the projection onto the x-y plane is considered.
Signature: v.encroaches(e)

faces
Returns a tuple of Faces that have this Vertex v.
If a Surface s is given, only Vertices on s are considered.
Signature: v.faces() or v.faces(s).

3.2. gts (GNU Triangulated surface) module 153

Yade Reference Documentation, Release 1st edition

is_boundary
True if this Vertex v is used by a boundary Edge of Surface s.
Signature: v.is_boundary().

is_connected
Return True if this Vertex v1 is connected to Vertex v2 by a Segment.
Signature: v1.is_connected().

is_ok
True if this Vertex v is OK. False otherwise. This method is useful for unit testing and
debugging.
Signature: v.is_ok().

is_unattached
True if this Vertex v is not the endpoint of any Segment.
Signature: v.is_unattached().

neighbors
Returns a tuple of Vertices attached to this Vertex v by a Segment.
If a Surface s is given, only Vertices on s are considered.
Signature: v.neighbors() or v.neighbors(s).

replace
Replaces this Vertex v1 with Vertex v2 in all Segments that have v1. Vertex v1 itself is left
unchanged.
Signature: v1.replace(v2).

triangles
Returns a list of Triangles that have this Vertex v.
Signature: v.triangles()

154 Chapter 3. External modules

Bibliography

[Camborde2000a] F. Camborde, C. Mariotti, F.V. Donzé (2000), Numerical study of rock and
concrete behaviour by discrete element modelling. Computers and Geotechnics (27), pages
225–247.

[Chen2007a] Feng Chen, Eric. C. Drumm, Georges Guiochon (2007), Prediction/verification of par-
ticle motion in one dimension with the discrete-element method. International Journal of
Geomechanics, ASCE (7), pages 344–352. DOI 10.1061/(ASCE)1532-3641(2007)7:5(344)

[Dang2010] H. K. Dang, M. A. Meguid (2010), Algorithm to generate a discrete element speci-
men with predefined properties. International Journal of Geomechanics (10), pages 85-91. DOI
10.1061/(ASCE)GM.1943-5622.0000028

[Donze1994a] F.V. Donzé, P. Mora, S.A. Magnier (1994), Numerical simulation of faults and shear
zones. Geophys. J. Int. (116), pages 46–52.

[Donze1995a] F.V. Donzé, S.A. Magnier (1995), Formulation of a three-dimensional numerical
model of brittle behavior. Geophys. J. Int. (122), pages 790–802.

[Donze1999a] F.V. Donzé, S.A. Magnier, L. Daudeville, C. Mariotti, L. Davenne (1999), Study of the
behavior of concrete at high strain rate compressions by a discrete element method.
ASCE J. of Eng. Mech (125), pages 1154–1163. DOI 10.1016/S0266-352X(00)00013-6

[Donze2004a] F.V. Donzé, P. Bernasconi (2004), Simulation of the blasting patterns in shaft
sinking using a discrete element method. Electronic Journal of Geotechnical Engineering (9),
pages 1–44.

[Duriez2010] J. Duriez, F.Darve, F.-V.Donze (2010), A discrete modeling-based constitutive re-
lation for infilled rock joints. International Journal of Rock Mechanics & Mining Sciences. DOI
10.1016/j.ijrmms.2010.09.008 (in press)

[Harthong2009] Harthong, B., Jerier, J. F., Dorémus, P., Imbault, D., Donzé, F. V. (2009), Modeling
of high-density compaction of granular materials by the discrete element method. Inter-
national Journal of Solids and Structures (46), pages 3357–3364. DOI 10.1016/j.ijsolstr.2009.05.008

[Hassan2010] A. Hassan, B. Chareyre, F. Darve, J. Meyssonier, F. Flin (2010 (submitted)),
Microtomography-based discrete element modelling of creep in snow. Granular Matter.

[Hentz2004a] S. Hentz, F.V. Donzé, L.Daudeville (2004), Discrete element modelling of concrete
submitted to dynamic loading at high strain rates. Computers and Structures (82), pages
2509–2524. DOI 10.1016/j.compstruc.2004.05.016

[Hentz2004b] S. Hentz, L. Daudeville, F.V. Donzé (2004), Identification and validation of a discrete
element model for concrete. ASCE Journal of Engineering Mechanics (130), pages 709–719. DOI
10.1061/(ASCE)0733-9399(2004)130:6(709)

[Hentz2005a] S. Hentz, F.V. Donzé, L.Daudeville (2005), Discrete elements modeling of a rein-
forced concrete structure submitted to a rock impact. Italian Geotechnical Journal (XXXIX),
pages 83–94.

[Jerier2009] Jerier, Jean-François, Imbault, Didier, Donzé, Fréederic-Victor, Doremus, Pierre (2009),
A geometric algorithm based on tetrahedral meshes to generate a dense polydisperse
sphere packing. Granular Matter (11). DOI 10.1007/s10035-008-0116-0

155

http://dx.doi.org/10.1061/(ASCE)1532-3641(2007)7:5(344)
http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000028
http://dx.doi.org/10.1016/S0266-352X(00)00013-6
http://dx.doi.org/10.1016/j.ijrmms.2010.09.008
http://dx.doi.org/10.1016/j.ijsolstr.2009.05.008
http://dx.doi.org/10.1016/j.compstruc.2004.05.016
http://dx.doi.org/10.1061/(ASCE)0733-9399(2004)130:6(709)
http://dx.doi.org/10.1007/s10035-008-0116-0

Yade Reference Documentation, Release 1st edition

[Jerier2010] Jerier, Jean-François, Richefeu, Vincent, Imbault, Didier, Donzé, Fréderic-Victor (2010),
Packing spherical discrete elements for large scale simulations. Computer Methods in Applied
Mechanics and Engineering. DOI 10.1016/j.cma.2010.01.016

[Jerier2010b] J.-F. Jerier, B. Hathong, V. Richefeu, B. Chareyre, D. Imbault, F.-V. Donze, P. Doremus
(2010), Study of cold powder compaction by using the discrete element method. Powder
Technology (In Press). DOI DOI: 10.1016/j.powtec.2010.08.056

[Kozicki2005a] J. Kozicki (2005), Discrete lattice model used to describe the fracture process
of concrete. Discrete Element Group for Risk Mitigation Annual Report 1, Grenoble University of
Joseph Fourier, France, pages 95–101. (fulltext)

[Kozicki2006a] J. Kozicki, J. Tejchman (2006), 2d lattice model for fracture in brittle materials.
Archives of Hydro-Engineering and Environmental Mechanics (53), pages 71–88. (fulltext)

[Kozicki2007a] J. Kozicki, J. Tejchman (2007), Effect of aggregate structure on fracture process
in concrete using 2d lattice model”. Archives of Mechanics (59), pages 365–384. (fulltext)

[Kozicki2008] J. Kozicki, F.V. Donzé (2008),A new open-source software developed for numerical
simulations using discrete modeling methods. Computer Methods in Applied Mechanics and
Engineering (197), pages 4429–4443. DOI 10.1016/j.cma.2008.05.023 (fulltext)

[Kozicki2009] J. Kozicki, F.V. Donzé (2009), Yade-open dem: an open-source software using
a discrete element method to simulate granular material. Engineering Computations (26),
pages 786–805. DOI 10.1108/02644400910985170 (fulltext)

[Magnier1998a] S.A. Magnier, F.V. Donzé (1998), Numerical simulation of impacts using a dis-
crete element method. Mech. Cohes.-frict. Mater. (3), pages 257–276. DOI 10.1002/(SICI)1099-
1484(199807)3:3<257::AID-CFM50>3.0.CO;2-Z

[Nicot2007a] Nicot, F., L. Sibille, F.V. Donzé, F. Darve (2007), From microscopic to macroscopic
second-order work in granular assemblies. Int. J. Mech. Mater. (39), pages 664–684. DOI
10.1016/j.mechmat.2006.10.003

[Scholtes2009a] Scholtès, L., Chareyre, B., Nicot, F., Darve, F. (2009), Micromechanics of granular
materials with capillary effects. International Journal of Engineering Science (47), pages 64–75.
DOI 10.1016/j.ijengsci.2008.07.002

[Scholtes2009b] Scholtès, L., Hicher, P.-Y., Chareyre, B., Nicot, F., Darve, F. (2009), On the capillary
stress tensor in wet granular materials. International Journal for Numerical and Analytical
Methods in Geomechanics (33), pages 1289–1313. DOI 10.1002/nag.767

[Scholtes2009c] Scholtès, L., Chareyre, B., Nicot, F., Darve, F. (2009), Discrete modelling of cap-
illary mechanisms in multi-phase granular media. Computer Modeling in Engineering and
Sciences (52), pages 297–318. DOI ‘ <http://dx.doi.org/>‘_

[Sibille2007a] L. Sibille, F. Nicot, F.V. Donzé, F. Darve (2007), Material instability in granular
assemblies from fundamentally different models. International Journal For Numerical and
Analytical Methods in Geomechanics (31), pages 457–481. DOI 10.1002/nag.591

[Sibille2008a] L. Sibille, F.-V. Donzé, F. Nicot, B. Chareyre, F. Darve (2008), From bifurcation
to failure in a granular material: a dem analysis. Acta Geotechnica (3), pages 15–24. DOI
10.1007/s11440-007-0035-y

[Smilauer2006] Václav Šmilauer (2006), The splendors and miseries of yade design. Annual Report
of Discrete Element Group for Hazard Mitigation. (fulltext)

[Catalano2008a] E. Catalano (2008), Infiltration effects on a partially saturated slope - an ap-
plication of the discrete element method and its implementation in the open-source
software yade. Master thesis at UJF-Grenoble. (fulltext)

[Duriez2009a] J. Duriez (2009), Stabilité des massifs rocheux : une approche mécanique. PhD
thesis at Institut polytechnique de Grenoble. (fulltext)

[Kozicki2007b] J. Kozicki (2007),Application of discrete models to describe the fracture process
in brittle materials. PhD thesis at Gdansk University of Technology. (fulltext)

[Scholtes2009d] Luc Scholtès (2009), modélisation micromécanique des milieux granulaires par-
tiellement saturés. PhD thesis at Institut National Polytechnique de Grenoble. (fulltext)

156 Bibliography

http://dx.doi.org/10.1016/j.cma.2010.01.016
http://dx.doi.org/DOI:10.1016/j.powtec.2010.08.056
https://yade-dem.org/w/images/f/f0/Discrete_lattice_model_DEM_risk_mitigation_kozicki.pdf
https://yade-dem.org/w/images/5/54/Ahem_2006_kozicki.pdf
https://yade-dem.org/w/images/0/09/Ams_2007_kozicki_tejchman.pdf
http://dx.doi.org/10.1016/j.cma.2008.05.023
https://yade-dem.org/w/images/3/30/CMAME_YADE_2008.pdf
http://dx.doi.org/10.1108/02644400910985170
https://yade-dem.org/w/images/8/80/EC_YADE_2008.pdf
http://dx.doi.org/10.1002/(SICI)1099-1484(199807)3:3%3c257::AID-CFM50%3e3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1099-1484(199807)3:3%3c257::AID-CFM50%3e3.0.CO;2-Z
http://dx.doi.org/10.1016/j.mechmat.2006.10.003
http://dx.doi.org/10.1016/j.ijengsci.2008.07.002
http://dx.doi.org/10.1002/nag.767
http://dx.doi.org/
http://dx.doi.org/10.1002/nag.591
http://dx.doi.org/10.1007/s11440-007-0035-y
https://yade-dem.org/w/images/a/a6/Smilauer-the_splendors_and_miseries_of_yade_design-2007.pdf
https://yade-dem.org/w/images/a/af/SlopeStability.pdf
http://tel.archives-ouvertes.fr/tel-00462072/fr/
http://janek.kozicki.pl/phdthesis/kozicki_2007_PhD.pdf
http://tel.archives-ouvertes.fr/tel-00363961/en/

Yade Reference Documentation, Release 1st edition

[Smilauer2010b] Václav Šmilauer (2010), Cohesive particle model using the discrete element
method on the yade platform. PhD thesis at Czech Technical University in Prague, Faculty
of Civil Engineering & Université Grenoble I – Joseph Fourier, École doctorale I-MEP2. (fulltext)
(LaTeX sources)

[Smilauer2010c] Václav Šmilauer (2010),Doctoral thesis statement. (PhD thesis summary). (fulltext)
(LaTeX sources)

[Chareyre2009] Chareyre B.„ Scholtès L. (2009), Micro-statics and micro-kinematics of capillary
phenomena in dense granular materials. In Powders and Grains 2009 (Golden, USA).

[Chen2008a] Chen, F., Drumm, E.C., Guiochon, G., Suzuki, K (2008), Discrete element simulation
of 1d upward seepage flow with particle-fluid interaction using coupled open source
software. In Proceedings of The 12th International Conference of the International Association for
Computer Methods and Advances in Geomechanics (IACMAG) Goa, India.

[Chen2009] Chen, F., Drumm, E.C., Guiochon, G. (2009), 3d dem analysis of graded rock fill sink-
hole repair: particle size effects on the probability of stability. In Transportation Research
Board Conference (Washington DC).

[Dang2008a] Dang, H.K., Mohamed, M.A. (2008), An algorithm to generate a specimen for dis-
crete element simulations with a predefined grain size distribution.. In 61th Canadian
Geotechnical Conference, Edmonton, Alberta.

[Dang2008b] Dang, H.K., Mohamed, M.A. (2008), 3d simulation of the trap door problem using
the discrete element method.. In 61th Canadian Geotechnical Conference, Edmonton, Alberta.

[Gillibert2009] Gillibert L., Flin F., Rolland du Roscoat S., Chareyre B., Philip A., Lesaffre B.,
Meyssonier J. (2009), Curvature-driven grain segmentation: application to snow images
from x-ray microtomography. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (Miami, USA).

[Hicher2009] Hicher P.-Y., Scholtès L., Chareyre B., Nicot F., Darve F. (2008), On the capillary
stress tensor in wet granular materials. In Inaugural International Conference of the Engineering
Mechanics Institute (EM08) - (Minneapolis, USA).

[Kozicki2003a] J. Kozicki, J. Tejchman (2003), Discrete methods to describe the behaviour of
quasi-brittle and granular materials. In 16th Engineering Mechanics Conference, University of
Washington, Seattle, CD–ROM.

[Kozicki2003c] J. Kozicki, J. Tejchman (2003), Lattice method to describe the behaviour of quasi-
brittle materials. In CURE Workshop, Effective use of building materials, Sopot.

[Kozicki2004a] J. Kozicki, J. Tejchman (2004), Study of fracture process in concrete using a
discrete lattice model. In CURE Workshop, Simulations in Urban Engineering, Gdansk.

[Kozicki2005b] J. Kozicki, J. Tejchman (2005), Simulations of fracture in concrete elements us-
ing a discrete lattice model. In Proc. Conf. Computer Methods in Mechanics (CMM 2005),
Czestochowa, Poland.

[Kozicki2005c] J. Kozicki, J. Tejchman (2005), Simulation of the crack propagation in concrete
with a discrete lattice model. In Proc. Conf. Analytical Models and New Concepts in Concrete
and Masonry Structures (AMCM 2005), Gliwice, Poland.

[Kozicki2006b] J. Kozicki, J. Tejchman (2006), Modelling of fracture process in brittle materials
using a lattice model. In Computational Modelling of Concrete Structures, EURO-C (eds.: G.
Meschke, R. de Borst, H. Mang and N. Bicanic), Taylor anf Francis.

[Kozicki2006c] J. Kozicki, J. Tejchman (2006), Lattice type fracture model for brittle materials.
In 35th Solid Mechanics Conference (SOLMECH 2006), Krakow.

[Kozicki2007c] J. Kozicki, J. Tejchman (2007), Simulations of fracture processes in concrete using
a 3d lattice model. In Int. Conf. on Computational Fracture and Failure of Materials and Structures
(CFRAC 2007), Nantes. (fulltext)

[Kozicki2007d] J. Kozicki, J. Tejchman (2007), Effect of aggregate density on fracture process
in concrete using 2d discrete lattice model. In Proc. Conf. Computer Methods in Mechanics
(CMM 2007), Lodz-Spala.

Bibliography 157

http://beta.arcig.cz/~eudoxos/smilauer2010-phd-thesis.pdf
http://bazaar.launchpad.net/~eudoxos/+junk/thesis/files
http://beta.arcig.cz/~eudoxos/smilauer2010-phd-thesis-statement.pdf
http://bazaar.launchpad.net/~eudoxos/+junk/thesis/files
https://yade-dem.org/w/images/2/27/Nantes_2007_kozicki.pdf

Yade Reference Documentation, Release 1st edition

[Kozicki2007e] J. Kozicki, J. Tejchman (2007), Modelling of a direct shear test in granular bodies
with a continuum and a discrete approach. In Proc. Conf. Computer Methods in Mechanics
(CMM 2007), Lodz-Spala.

[Kozicki2007f] J. Kozicki, J. Tejchman (2007), Investigations of size effect in tensile fracture
of concrete using a lattice model. In Proc. Conf. Modelling of Heterogeneous Materials with
Applications in Construction and Biomedical Engineering (MHM 2007), Prague.

[Scholtes2007a] L. Scholtès, B. Chareyre, F. Nicot, F. Darve (2007), Micromechanical modelling of
unsaturated granular media. In Proceedings ECCOMAS-MHM07, Prague.

[Scholtes2008a] L. Scholtès, B. Chareyre, F. Nicot, F. Darve (2008), Capillary effects modelling
in unsaturated granular materials. In 8th World Congress on Computational Mechanics - 5th
European Congress on Computational Methods in Applied Sciences and Engineering, Venice.

[Scholtes2008b] L. Scholtès, P.-Y. Hicher, F.Nicot, B. Chareyre, F. Darve (2008), On the capillary
stress tensor in unsaturated granular materials. In EM08: Inaugural International Conference
of the Engineering Mechanics Institute, Minneapolis.

[Scholtes2009e] Scholtes L, Chareyre B, Darve F (2009), Micromechanics of partialy saturated
granular material. In Int. Conf. on Particle Based Methods, ECCOMAS-Particles.

[Shiu2007a] W. Shiu, F.V. Donze, L. Daudeville (2007), Discrete element modelling of missile
impacts on a reinforced concrete target. In Int. Conf. on Computational Fracture and Failure
of Materials and Structures (CFRAC 2007), Nantes.

[Smilauer2007a] V. Šmilauer (2007), Discrete and hybrid models: applications to concrete dam-
age. In Unpublished. (fulltext)

[Smilauer2008] Václav Šmilauer (2008), Commanding c++ with python. In ALERT Doctoral school
talk. (fulltext)

[Smilauer2010a] Václav Šmilauer (2010), Yade: past, present, future. In Internal seminary in Labo-
ratoire 3S-R, Grenoble. (fulltext) (LaTeX sources)

[Stransky2010] Jan Stránský, Milan Jirásek, Václav Šmilauer (2010), Macroscopic elastic properties
of particle models. In Proceedings of the International Conference on Modelling and Simulation
2010, Prague. (fulltext)

[yade:background] V. Šmilauer, B. Chareyre (2010), Yade dem formulation. In Yade Documentation
(V. Šmilauer, ed.), The Yade Project , 1st ed. (http://yade-dem.org/doc/formulation.html)

[yade:doc] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C.
Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni (2010), Yade Documentation. The Yade
Project. (http://yade-dem.org/doc/)

[yade:manual] V. Šmilauer, A. Gladky, J. Kozicki, C. Modenese, J. Stránský (2010), Yade, using and
programming. In Yade Documentation (V. Šmilauer, ed.), The Yade Project , 1st ed. (fulltext)
(http://yade-dem.org/doc/)

[yade:project] Yade: open source discrete element method (http://yade-dem.org)
[yade:reference] V. Šmilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Koz-

icki, C. Modenese, L. Scholtès, L. Sibille, J. Stránský, K. Thoeni (2010), Yade Reference Docu-
mentation. In Yade Documentation (V. Šmilauer, ed.), The Yade Project , 1st ed. (http://yade-
dem.org/doc/)

[Addetta2001] G.~A. D’Addetta, F. Kun, E. Ramm, H.~J. Herrmann (2001), From solids to granu-
lates - Discrete element simulations of fracture and fragmentation processes in geoma-
terials.. In Continuous and Discontinuous Modelling of Cohesive-Frictional Materials. (fulltext)

[Allen1989] M. P. Allen, D. J. Tildesley (1989), Computer simulation of liquids. Clarendon Press.
[Alonso2004] F. Alonso-Marroqu? R. Garc?Rojo, H. J. Herrmann (2004), Micro-mechanical inves-

tigation of the granular ratcheting. In Cyclic Behaviour of Soils and Liquefaction Phenomena.
(fulltext)

[Bertrand2005] D. Bertrand, F. Nicot, P. Gotteland, S. Lambert (2005), Modelling a geo-composite
cell using discrete analysis. Computers and Geotechnics (32), pages 564–577.

158 Bibliography

https://yade-dem.org/w/images/c/c8/Smilauer-discrete_and_hybrid_models_for_concrete-2007.pdf
https://yade-dem.org/w/images/4/40/Yade-python-aussois-2008.pdf
https://yade-dem.org/w/images/5/59/Eudoxos2010-yade-past-present-future.pdf
http://bazaar.launchpad.net/~eudoxos/yade/pres-grenoble2010/files
https://yade-dem.org/w/images/6/64/Stransky2010-Macroscopic-elastic-properties-of-particle-models.pdf
http://yade-dem.org/doc/formulation.html
http://yade-dem.org/doc/
http://yade-dem.org/doc/
http://yade-dem.org/doc/
http://yade-dem.org
http://yade-dem.org/doc/
http://yade-dem.org/doc/
http://www.comphys.ethz.ch/hans/p/267.pdf
http://www.comphys.ethz.ch/hans/p/334.pdf

Yade Reference Documentation, Release 1st edition

[Bertrand2008] D. Bertrand, F. Nicot, P. Gotteland, S. Lambert (2008), Discrete element method
(dem) numerical modeling of double-twisted hexagonal mesh. Canadian Geotechnical Jour-
nal (45), pages 1104–1117.

[Chareyre2002a] B. Chareyre, L. Briancon, P. Villard (2002), Theoretical versus experimental
modeling of the anchorage capacity of geotextiles in trenches.. Geosynthet. Int. (9), pages
97–123.

[Chareyre2002b] B. Chareyre, P. Villard (2002), Discrete element modeling of curved geosyn-
thetic anchorages with known macro-properties.. In Proc., First Int. PFC Symposium,
Gelsenkirchen, Germany.

[Chareyre2003] Bruno Chareyre (2003), Mod?sation du comportement d’ouvrages composites
sol-g?ynth?que par ?ments discrets - application aux tranch? d’ancrage en t? de talus..
PhD thesis at Grenoble University. (fulltext)

[Chareyre2005] Bruno Chareyre, Pascal Villard (2005), Dynamic spar elements and discrete ele-
ment methods in two dimensions for the modeling of soil-inclusion problems. Journal of
Engineering Mechanics (131), pages 689–698. DOI 10.1061/(ASCE)0733-9399(2005)131:7(689) (full-
text)

[CundallStrack1979] P.A. Cundall, O.D.L. Strack (1979), A discrete numerical model for granular
assemblies. Geotechnique (), pages 47–65. DOI 10.1680/geot.1979.29.1.47

[DeghmReport2006] F. V. Donz?ed.), Annual report 2006 (2006). Discrete Element Group for Hazard
Mitigation. Universit?oseph Fourier, Grenoble (fulltext)

[Duriez2010] J. Duriez, F.Darve, F.-V.Donze (2010), A discrete modeling-based constitutive re-
lation for infilled rock joints. International Journal of Rock Mechanics & Mining Sciences. (in
press)

[GarciaRojo2004] R. Garc?Rojo, S. McNamara, H. J. Herrmann (2004), Discrete element methods
for the micro-mechanical investigation of granular ratcheting. In Proceedings ECCOMAS
2004. (fulltext)

[Hentz2003] S?astien Hentz (2003), Mod?sation d’une structure en b?n arm?oumise ?n choc
par la m?ode des el?nts discrets. PhD thesis at Universit?renoble 1 – Joseph Fourier.

[Hubbard1996] Philip M. Hubbard (1996), Approximating polyhedra with spheres for time-
critical collision detection. ACM Trans. Graph. (15), pages 179–210. DOI 10.1145/231731.231732

[Johnson2008] Scott M. Johnson, John R. Williams, Benjamin K. Cook (2008), Quaternion-based
rigid body rotation integration algorithms for use in particle methods. International Jour-
nal for Numerical Methods in Engineering (74), pages 1303–1313. DOI 10.1002/nme.2210

[Jung1997] Derek Jung, Kamal K. Gupta (1997), Octree-based hierarchical distance maps for
collision detection. Journal of Robotic Systems (14), pages 789–806. DOI 10.1002/(SICI)1097-
4563(199711)14:11<789::AID-ROB3>3.0.CO;2-Q

[Klosowski1998] James T. Klosowski, Martin Held, Joseph S. B. Mitchell, Henry Sowizral, Karel Zikan
(1998), Efficient collision detection using bounding volume hierarchies of k-dops. IEEE
Transactions on Visualization and Computer Graphics (4), pages 21–36. (fulltext)

[Kuhl2001] E. Kuhl, G. A. D’Addetta, M. Leukart, E. Ramm (2001), Microplane modelling and
particle modelling of cohesive-frictional materials. In Continuous and Discontinuous Modelling
of Cohesive-Frictional Materials. DOI 10.1007/3-540-44424-6_3 (fulltext)

[Lu1998] Ya Yan Lu (1998), Computing the logarithm of a symmetric positive definite matrix.
Appl. Numer. Math (26), pages 483–496. DOI 10.1016/S0168-9274(97)00103-7 (fulltext)

[Luding2008] Stefan Luding (2008), Introduction to discrete element methods. In European Jour-
nal of Environmental and Civil Engineering.

[McNamara2008] S. McNamara, R. Garc?Rojo, H. J. Herrmann (2008), Microscopic origin of gran-
ular ratcheting. Physical Review E (77). DOI 11.1103/PhysRevE.77.031304

[Munjiza1998] A. Munjiza, K. R. F. Andrews (1998), Nbs contact detection algorithm for bodies
of similar size. International Journal for Numerical Methods in Engineering (43), pages 131–149.
DOI 10.1002/(SICI)1097-0207(19980915)43:1<131::AID-NME447>3.0.CO;2-S

Bibliography 159

http://tel.archives-ouvertes.fr/tel-00486807/fr/
http://dx.doi.org/10.1061/(ASCE)0733-9399(2005)131:7(689)
https://yade-dem.org/wiki/File:Chareyre%26Villard2005_licensed.pdf
https://yade-dem.org/wiki/File:Chareyre%26Villard2005_licensed.pdf
http://dx.doi.org/10.1680/geot.1979.29.1.47
http://geo.hmg.inpg.fr/frederic/Discrete_Element_Group_FVD.html
http://www.ica1.uni-stuttgart.de/publications/2004/GMH04
http://dx.doi.org/10.1145/231731.231732
http://dx.doi.org/10.1002/nme.2210
http://dx.doi.org/10.1002/(SICI)1097-4563(199711)14:11%3c789::AID-ROB3%3e3.0.CO;2-Q
http://dx.doi.org/10.1002/(SICI)1097-4563(199711)14:11%3c789::AID-ROB3%3e3.0.CO;2-Q
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6555&rep=rep1&type=pdf
http://dx.doi.org/10.1007/3-540-44424-6_3
http://www.springerlink.com/content/e50544266r506615
http://dx.doi.org/10.1016/S0168-9274(97)00103-7
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.759&rep=rep1&type=pdf
http://dx.doi.org/11.1103/PhysRevE.77.031304
http://dx.doi.org/10.1002/(SICI)1097-0207(19980915)43:1%3c131::AID-NME447%3e3.0.CO;2-S

Yade Reference Documentation, Release 1st edition

[Munjiza2006] A. Munjiza, E. Rougier, N. W. M. John (2006), Mr linear contact detection al-
gorithm. International Journal for Numerical Methods in Engineering (66), pages 46–71. DOI
10.1002/nme.1538

[Neto2006] Natale Neto, Luca Bellucci (2006), A new algorithm for rigid body molecular dynam-
ics. Chemical Physics (328), pages 259–268. DOI 10.1016/j.chemphys.2006.07.009

[Omelyan1999] Igor P. Omelyan (1999), A new leapfrog integrator of rotational mo-
tion. the revised angular-momentum approach. Molecular Simulation (22). DOI
10.1080/08927029908022097 (fulltext)

[Pfc3dManual30] ICG (2003), Pfc3d (particle flow code in 3d) theory and background manual,
version 3.0. Itasca Consulting Group.

[Pournin2001] L. Pournin, Th. M. Liebling, A. Mocellin (2001), Molecular-dynamics force models
for better control of energy dissipation in numerical simulations of dense granular media.
Phys. Rev. E (65), pages 011302. DOI 10.1103/PhysRevE.65.011302

[Price2007] Mathew Price, Vasile Murariu, Garry Morrison (2007), Sphere clump generation and
trajectory comparison for real particles. In Proceedings of Discrete Element Modelling 2007.
(fulltext)

[Satake1982] M. Satake (1982), Fabric tensor in granular materials.. In Proc., IUTAM Symp. on
Deformation and Failure of Granular materials, Delft, The Netherlands.

[Thornton1991] Colin Thornton, K. K. Yin (1991), Impact of elastic spheres with and without
adhesion. Powder technology (65), pages 153–166. DOI 10.1016/0032-5910(91)80178-L

[Thornton2000] Colin Thornton (2000), Numerical simulations of deviatoric shear deformation
of granular media. G?echnique (50), pages 43–53. DOI 10.1680/geot.2000.50.1.43

[Verlet1967] Loup Verlet (1967), Computer ‘‘experiments” on classical fluids. i. thermodynam-
ical properties of lennard-jones molecules. Phys. Rev. (159), pages 98. DOI 10.1103/Phys-
Rev.159.98

[Villard2004a] P. Villard, B. Chareyre (2004), Design methods for geosynthetic anchor trenches
on the basis of true scale experiments and discrete element modelling. Canadian Geotech-
nical Journal (41), pages 1193–1205.

[Wang2009] Yucang Wang (2009), A new algorithm to model the dynamics of 3-d bonded
rigid bodies with rotations. Acta Geotechnica (4), pages 117–127. DOI 10.1007/s11440-008-0072-
1 (fulltext)

[cgal] Jean-Daniel Boissonnat, Olivier Devillers, Sylvain Pion, Monique Teillaud, Mariette Yvinec (2002),
Triangulations in cgal. Computational Geometry: Theory and Applications (22), pages 5–19.

160 Bibliography

http://dx.doi.org/10.1002/nme.1538
http://dx.doi.org/10.1016/j.chemphys.2006.07.009
http://dx.doi.org/10.1080/08927029908022097
http://arxiv.org/pdf/physics/9901025
http://dx.doi.org/10.1103/PhysRevE.65.011302
http://www.cogency.co.za/images/info/dem2007_sphereclump.pdf
http://dx.doi.org/10.1016/0032-5910(91)80178-L
http://dx.doi.org/10.1680/geot.2000.50.1.43
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1103/PhysRev.159.98
http://dx.doi.org/10.1007/s11440-008-0072-1
http://dx.doi.org/10.1007/s11440-008-0072-1
http://www.springerlink.com/content/l2306412v1004871/

Python Module Index

_
yade._eudoxos, 104
yade._packObb, 115
yade._packPredicates, 113
yade._packSpheres, 110
yade._utils, 133

e
yade.eudoxos, 103
yade.export, 105

g
gts, 144

l
yade.linterpolation, 106
yade.log, 107

m
miniEigen, 141

p
yade.pack, 107
yade.plot, 115
yade.post2d, 118

q
yade.qt, 121
yade.qt._GLViewer, 121

t
yade.timing, 123

u
yade.utils, 124

y
yade.ymport, 138

161

	Class reference (yade.wrapper module)
	Bodies
	Interactions
	Global engines
	Partial engines
	Bounding volume creation
	Interaction Geometry creation
	Interaction Physics creation
	Constitutive laws
	Callbacks
	Preprocessors
	Rendering
	Simulation data
	Other classes

	Yade modules
	yade.eudoxos module
	yade.export module
	yade.linterpolation module
	yade.log module
	yade.pack module
	yade.plot module
	yade.post2d module
	yade.qt module
	yade.timing module
	yade.utils module
	yade.ymport module

	External modules
	miniEigen (math) module
	gts (GNU Triangulated surface) module

	Bibliography
	Python Module Index

