
The Splendors and Miseries of Yade design

Václav Šmilauer

January 13, 2007

Abstract

This article maps software design and implementation deficiencies
of Yade, a program for dynamic physical simulations. It does so from
the point of a recent newcomer who got involved with the development
who now tries to consider and suggests ways to rectify the situation.

Contents
1 Introduction 2

2 Annoying issues 2

3 Real future and imaginary vision 4
3.1 Build system . 5
3.2 Refactoring . 6

3.2.1 Class renaming . 6
3.2.2 Unused and superfluous components 7
3.2.3 File layout . 7

3.3 Plugin loader . 8
3.4 Parallelization . 8

3.4.1 Code vectorization . 8
3.4.2 Parallelization with shared memory 9
3.4.3 Parallelization with message passing 10

3.5 Reference benchmarks . 11
3.6 Scripting . 11

4 Conclusion 12

1

1 Introduction
Yade[19] is a program for dynamic physical simulations, initiated by Fredéric
Donzé, initially developed by Olivier Galizzi, later jointly with Janek Kozicki
and finally by a few other persons from Laboratoire 3S, Grenoble. I joined
the development in octobre 2006, originally motivated by modeling concrete
damage under extreme loads.

Soon enough, it has become apparent that using Yade requires some un-
derstanding of its design, which was only poorly described by a few docu-
ments (see below). Since there were several issues with the code itself, I took
the necessity of getting acquainted with sources as an opportunity to improve
what I saw as deficient. In the following, I tried to list such deficiencies under
two categories:

1. what I consider to be bugs that I encountered when routinely develop-
ing / using Yade;

2. what seems to me necessary to be addressed in long term — in the
sense of issues that will get to surface sonner or later.

To avoid misunderstanding, I do think that the overall design of Yade is
sound, which is the reason I point out individual deficiencies; if I thought that
Yade were rotten from the roots up, I wouldn’t bother enumerating blemishes.
The positive aspects are present, but only implicitly and/or tacitly. The
reader needs to concentrate very well to discern those.

The objection of non-constructive criticism can be easily anticipated, es-
pecially in cases when some points I make can be taken personally. Tho
that, my answer is as follows. The popular difference of constructive and
non-constructive criticism is not fine enough to understand that their differ-
ence is not in the content but much rather in the intention of the one who
raises it. However, it would be absurd if I were destructive in my intention,
since I would turn that destructivity against myself, as I do make part of the
development of Yade; and will for several months to come.

2 Annoying issues
The following list is based on my (short) experience or discussions with other
users. I tried to list these issues with decreasing importance.

2

No documentation. Since Yade’s design is rather complex, a comprehen-
sive overview of the overall functioning should be provided. Currently,
except for two half-finished and half-obsolete articles ([20], [17]), there
is no such thing. (Admittedly, Janek Kozicki was very willing to help
on Yade’s IRC channel or otherwise — and I thank him wholeheartedly
— but this is not a substitute for real documentation.)

No documentation. Given that there is, from the design point of view,
much emphasis on modularity in order to be able to use different al-
gorithms, the lack of per-class documentation is quite cumbersome as
well. Even though formally the Doxygen documentation framework is
set up, it is used but very rarely; what should be explained at this level
is what is the purpose of this particular class (e.g. CunallNonViscous-
Damping should contain reference to the relevant article by Cundall so
that interested user may find rationale of such algorithm or its scope of
use), how it interacts with other classes, what are its implementation
limitations with regards to the algorithm. Class name clearly is not
sufficient to contain all such information.

No documentation. On the most local level, source code is very rarely
commented. The traditional maxim “the source code is the documenta-
tion”[14, pg. 54] (shouldn’t it be “the documentation”?) is not appli-
cable, as relatively little code contains algorithms in the proper sense.
Vast majority of code is taken by declaration/definition duplication,
framework macros for home-brown RTTI, serialization routines, class
interactions, header includes. Along with rather low code/file ratio,
this made my first encounter with Yade quite frustrating.

Overdesigned file layout. If UNIX were designed like Yade, we would
have paths like /usr/usr-local/usr-local-bin — cf. yade/yade-
libs/yade-lib-serialization and the like. In case that seems OK:
the actual source code is nevertheless in yade/yade-libs/yade-lib-
serialization/src/yade-lib-serialization/.

No proper error handling. Robustness is given by the ability to handle
non-standard conditions. Functions should check their input values
with assertions (these are compiled out for optimized builds, hence do
not incur performance penalty) and not suppose that the user will val-
idate them (even if validation rules were documented). Return values

3

from calls that may fail (notably, system calls) should be checked con-
sistently.

To name a few particular roblems of this kind that I encountered:

1. Unhandled exception (crash) if, within a plugin directory, there is
a file with two dots or a dotted file. (Fixed, was a “portability”
feature (!) of boost::path.)

2. Hang if filegenerator attempts to create dispatcher to non-existent
class. (Fixed: exceptions do not propagate accross threads.)

3. At many places (file generators, recorders), output file stream is
created but never checked; this has disappearing data for conse-
quence.

A great bonus feature would be to install SIGSEGV handler that would
attach debugger to Yade, permitting inspection of stack trace, open
files, etc. This is superior to code forensics, since (a) no manual inter-
vention is necessary and (b) the process still exists as a process.

Bad support for 3rd party modules. When building an out-of-tree mod-
ule, compiler and linker flags should be consistent. The usual way is
to use pkg-config[12] (used by e.g. gtk2 and qt4) or a file config.h
included by all files. Work is being done on pkg-config.

No support for live debugging. Due to complexity of Yade functioning,
it is not always feasible to run it from debugger. What seem to be the
most important to me is a flexible logging framework (message severity,
sources, destinations, filtering). (Experimental support is provided for
the log4cxx library[7] with backward-compatible macro definition if
this library is not present.)

3 Real future and imaginary vision
My opinion is that the following problems will be faced sooner or later. There
is one and foremost, however, that I would call realistic vision of development.
Yade was endowed with maximalism and design perfectionism at its very
conception; striving for perfection — even for dubious “reasons” like self-
affirmation — provides boldness in design and sometimes also endurance in

4

implementation. But finding the balance between both is not necessarily not
easy; resources are limited, because of one’s own mortality as well as limited
number of people, teams are pressed to have results as soon as possible, to
name a few.

Many of my questions or buggy behavior reports were answered by “I
already know how to improve that, I just (!) need to implement it”, as if
the genius needed only to think of a solution and the manual labour were
secondary or not even worth the genius’ time. In this way, less interesting
parts (like detailed documentation, which is actually quite boring thing to
do) are left alone in favor of planning unit-testing framework. I am sure that
the framework itself will eventually be put in place; yeah, then someone just
needs to write the actual tests. Pretty much in the same way as there is
a proof-of-concept implementation of FEM that is otherwise useless, just to
prove that the framework can work with FEM! The actual implementation
of good FEM code is left as an exercise to the reader, hmm. . .

The vision of all-capable software necessarily leads to failure in long term,
since the available workforce is too dispersed; therefore I think that Yade will
have to narrow its scope. The vision is work of intellective prediction faculties
tainted with excessive self-esteem: most of the planned work will never be
done. Yade needs some real management (with some executive power) to
steer the development so that long-term goals are met and evaluation of
what has been done is performed.

3.1 Build system

The current qmake/make-based build system suffers has a number of issues.

1. Automatic configuration is not supported. Although it probably has
not been an issue until now, using more external libraries and building
in less homegeneous environments will enforce library detection, pro-
cessor features etc. (Autotools have received a lot of justified criticism
and are not to be considered at all.)

2. Parallel builds are not supported; major speedup when developing can
be gained here. Multicore machine seem to be the future of computing
for some years to come. Distcc can be used to distribute compilation
accros network. (J. Kozicki once told me that his method for parallel
builds is to run make -j4 several times until it doesn’t fail (!).)

5

3. Bad maintainability, as the files controlling compilation are scattered
throughout the whole build tree. For example, recent addition of
Wm3Foundation to all files to be linked against required a lot of script-
ing.

I tried to address these with SCons[13], which is extensively used and has an
active community around (I dropped waf[15] for being much less mature and
almost not used one-man project). Its notable features are:

• All configuration is localized in one SConstruct master file, target lists
are in relatively few SConscript files. Option propagation from master
file to individual targets is provided.

• Very good support for parallel builds (including distcc).

• Support for library detection, easy “profile” configuration (debug, pro-
filing, optimized builds).

• SCons uses python for its scripts (and is itself written in Python), which
gives virtually unlimited flexibility to the build process.

For now, SConscript files are generated automatically from qmake’s project
files, hence both build systems may be used at this time. However, I hope
to be able to drop qmake entirely once SCons support stabilizes. This will
pave our way to massive refactoring as described below.

3.2 Refactoring

Refactoring as I understand it here involves more than the file layout men-
tioned supra: reverting design decisions/side-effects that proved to be detri-
mental (besides ditching c++). Unfortunately, c++ has very few programs
to assist refactoring (due to its syntax, c++ is very difficult to parse cor-
rectly) and most of the time, textual replacements with perl/awk/sed/. . .
are used for such tasks.

3.2.1 Class renaming

Longish class names diminish readability of already unreadable code. For
example, lexical distance InteractingGeometry and InteractionGeometry
doesn’t correspond to its conceptual distance. Table 1 summarizes changes

6

BoundingVolume† Bag
GeometricalModel† Shape
InteractingGeometry† Mold
InteractionGeometry Bang
MetaEngine Dispatcher

Table 1: Current and proposed class names. Changes marked by † were
aggreed upon by J. Kozicki.

that I proposed, being guided by the principle that root classes should have
very short names: they are used very often and sometimes repeated in the
names of the derived classes.

3.2.2 Unused and superfluous components

Some Yade libraries are available externally and have been put into the tree.
The case of Wm3 geometry library[16] was already resolved by (painfully)
reverting changes done by Olivier Galizzi (renaming many methods so that
they are not capitalized) and linking against Wm3 library proper — fur-
thermore, this version (now obsoleted by Wm4) has been licensed under the
LGPL. Another candidate for cleanup is the Loki library[8].

Some components of Yade are always compiled but never used. yade-
lib-algorithms was already removed from the tree, with yade-lib-computational-
geometry following shortly.

Furthermore, the SCons build system now makes it possible to exclude
larger parts of Yade from compilation/installation (e.g. dem, fem, lattice,
. . .).

3.2.3 File layout

Once the migration to SCons is complete, it will be much easier to move
files in [component]/src/[component]/ to [component]/. Later, renaming
yade/yade-libs/yade-lib-serialization to yade/libs/serialization
etc. is the step to come.

7

3.3 Plugin loader

The current plugin loader has a few issues that should be addressed earlier
or later.

1. It deduces class name from library name. This could be rectified by
e.g. inspecting symbols defined in the file (like the utility nm does) or
by using a conventional symol (like yadeExportedClasses) that would
contain class names defined in that particular file; the second approach
is not automatic, but less difficult to implement.

2. Only one per plugin file, direct consequence of the preceding. That is
annoying if one wants to have related classes in one implementation file.
The workaround I use is to create symlinks with appropriate names to
the library in question.

Despie the fact that many c++ programs use plugins, I was unable to find a
robust and maintained library for it. The tentative solution I would propose
is to

1. See whether the library defines a conventional symbol like yadeExport-
edClasses. It would be an array of class names that this particular
library contains. Every multi=class plugin would have to take care to
use appropriate code to define that symbol. This is similar to module’s
method table in Python, for modules written in c/c++.

2. Otherwise, use the current fragile algorithm of class name inference
from filename.

3.4 Parallelization

Parallel computation allows for significant speed gains and can be performed
at different levels.

3.4.1 Code vectorization

Recent processors add “Single Instruction Multiple Data” (SIMD) instruc-
tions (SSE2 for the x86 platform, AltiVec for PowerPC), primarily perhaps
for the reason of faster 3D gaming. These instructions perform e.g. vector
addition (codeADDD) for 4 operands in 1 instruction. Vectorization is ben-
eficial even on one processor and is not intrusive from the source point of

8

implicit parallelization explicit parallelization
implicit communication automatic vectorization openMP
explicit communication — MPI

Table 2: Parallelization techniques by parallelization and communication
models, based on [4].

view. To make use of such techniques (reported speedups are in the order of
multiples, for some applications), one either has to use specialized fine-tuned
libraries (like Atlas[1]) or have compiler that is capable of vectorizing code
automatically.

The first option is probably ruled out, perhaps save for a few performance-
critical portions of the code. It could be beneficial to move to another vector
and matrix library instead of Wm3 (boost::ublas[3] or Atlas[1]) for this
reason.

The GNU compiler advances steadily[2, 6, 5] to make use of SIMD in-
structions where appropriate; loop vectorization is working (tested with a
minimal example), sequential code vectorization is being worked on. C++
iterators seem to be an obstacle to good optimization of loops, though. A
quick look into Wm3 sources further reveals, that e.g. vector addition is not
performed using a loop but rather sequentially, moreover using operator[]
instead of direct access to private component array members; therefore, Wm3
probably cannot masively benefit from automatic vetorization.

3.4.2 Parallelization with shared memory

Contrary to the previous case, at this level user is responsible for desig-
nating what portions of code should run in parallel. The emerging standard
openMP[11], supported by both GNU and Intel compilers, uses #pragmas to
insert parallelization directives; therefore, code can be compiled unmodified
on compilers that do not support openMP or if it is disabled. Configurable
number of threads is created, each one of them calculating some portion of
the problem.

Multi-core and/or multi-processor machines may benefit from this kind
of parallelization (possibly also Single-System-Image clusters that imple-
ment threads scattered accross nodes). Parallelization is still relatively non-
intrusive and communication is implicit and quasi-instant (via shared mem-

9

ory).

3.4.3 Parallelization with message passing

The standard for message passing MPI[10] defines protocol that makes eas-
ier cross-network parallelization. Both parallelization and communication
(with more or less important latencies — see below) are explicit and are very
intrusive on the source level.

Rentability criterion. Contrary to FEM code that is computationally
very intensive and benefits greatly from parallelization, DEM code tends to
have comparatively low computation/communication ratio. Therefore, we
should carefully consider possible benefits before laborious implementation.

Let us try to estimate roughly time that can be gained from MPI.1 Single-
node iteration takes t1, iteration on MPI cluster with n (n ≥ 2) nodes takes
tn. What we call “rentability criterion” is the condition tn < t1. If we suppose
perfect linear scalability, we may estimate

tn =
t1 + ld

n
+ ll, (1)

where ll is constant per-roundtrip latency given by physical, link, network
and transport network layers and constant component of application layer;
ld is linear latency as function of amount of data being communicated (seri-
alization and network transmission), thus is being distributed accross nodes
(we simplify by taking ld

n
' ld

n−1
); the actual per-node calculation time is t1

n
.

Substituting (1) into the rentability condition, we obtain(
1− 1

n

)
t1 > ll +

ld
n

. (2)

If we consider imperfect scalability (with the coefficient s < 1) and t′n =

stn, the factor
(
1− 1

n

)
is further multiplied by s. Therefore, is yet more

restrictive.
Now, since

(
1− 1

n

)
s < 1, we want t1 � ll if the speedup is to be sig-

nificant and justified by the effort of implementation. Whether ld influences
heavily this condition is estimated below.

1This part is almost literal copy of my message sent to yade-dev@lits.berlios.de
25/12/2006.

10

yade-dev@lits.berlios.de

Rentability estimation. Let us suppose that physical system state
needs to be synchronized between nodes after each iteration. We estimate
ll = 10 ms: [9] reports 5 ms on InfiniBand network, taking double latency
on regular 1GBit switched UTP network is perhaps too optimistic. To esti-
mate the order of ld, let us consider 40 MBs−1 (on a switched Gbit network,
provided that NICs are not on 32-bit PCI), we get to 40 kB

ms
. Even if actual

simulation requires large data amounts to be transmitted at each iteration,
this time can be still reduced by compression, intelligent caching etc. —
thusly the ommisionn of ld above is justified.

Now, for 100 iterations/sec (t1 = 10 ms), we have t1 ≈ ll, therefore t1 6� ll
and parallelization is not rentable. For lower iteration speed, t1 may increase
significantly and parallal computation may yield some speedup.

3.5 Reference benchmarks

After some substantial changes to code (like replacing math library or im-
plementing alternative algorith for a particular task), one would like to mea-
sure its impact on overall performance on some set standardized simula-
tions. Providing such a set would make it possible to quantitatively evaluate
speedups/slowdowns from a particular change.

Further, frequently one would like to compare performance of Yade against
some other software (be it SDEC, Yade’s predecessor, or some commercially
available program). Having performance data with exhaustive parameters
(machine type, processor, memory, bus type, compilation options, library
versions, etc.) would perhaps prevent software nacism (“Yade rulez, SDEC
sucks”) or justify it.

3.6 Scripting

This would be a “killer enhancement”, though probably quite difficult to
implement:

1. The original design clearly did not take inter-language cooperation into
account;

2. c++ is difficult to be interfaced with.

Minimalist scripting would allow user to command Yade (simulation control,
but also generating input files, evaluating given expression at given time)

11

using another language. Maximalist scripting would permit coding a class in
the other language, while it still would be used by the c++ core.

4 Conclusion
This article may provoke some discussion and I hope it will do so. Any feed-
back, be it positive or negative, should be sent to Yade developer’s mailing
list[18].

References
[1] Automatically Tuned Linear Algebra Software, http://math-atlas.

sourceforge.net

[2] David Monniaux, Automatic vectorization for the masses (http://www.
advogato.org/article/871.html).

[3] Boost::ublas library, http://boost.org/libs/numeric/ublas/index.
html.

[4] Diego Novillo, Parallel Programming with GCC, http://people.
redhat.com/dnovillo/Papers/rhs2006.pdf.

[5] Autovect-branch optimizations, http://gcc.gnu.org/wiki/
AutovectBranchOptimizations.

[6] Auto-vectorization in GCC, http://gcc.gnu.org/projects/
tree-ssa/vectorization.html.

[7] Log4cxx library, http://logging.apache.org/log4cxx.

[8] Loki library, http://loki-lib.sourceforge.net/.

[9] Cluster Price/Performance Trends, http://lqcd.fnal.gov/trends.
html.

[10] Message Passing Interface, http://www.mpi.org

[11] OpenMP, http://www.openmp.org

12

http://math-atlas.sourceforge.net
http://math-atlas.sourceforge.net
http://www.advogato.org/article/871.html
http://www.advogato.org/article/871.html
http://boost.org/libs/numeric/ublas/index.html
http://boost.org/libs/numeric/ublas/index.html
http://people.redhat.com/dnovillo/Papers/rhs2006.pdf
http://people.redhat.com/dnovillo/Papers/rhs2006.pdf
http://gcc.gnu.org/wiki/AutovectBranchOptimizations
http://gcc.gnu.org/wiki/AutovectBranchOptimizations
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://logging.apache.org/log4cxx
http://loki-lib.sourceforge.net/
http://lqcd.fnal.gov/trends.html
http://lqcd.fnal.gov/trends.html
http://www.mpi.org
http://www.openmp.org

[12] Pkg-config, http://pkg-config.freedesktop.org

[13] SCons, software construction tool, http://www.scons.org.

[14] S. Garfinkel, D. Weise and S. Strassmann, The UNIX-HATERS Hand-
book, IDG Books Worldwide, San Mateo, 1994.

[15] The Waf build system, http://freehackers.org/~tnagy/bksys.
html.

[16] Wild Magic Geometric Tools, http://www.geometrictool.com.

[17] O. Galizzi, J. Kozićki, F. Donzé, Application of modern software design
for numerical simulations, not (yet?) published.

[18] Yade developer’s mailing list, yade-dev@lists.berlios.de; search-
able archive http://news.gmane.org/gmane.science.physics.yade.
devel.

[19] Yade, Yet Another Dynamic Engine, yade.berlios.de.

[20] O. Galizzi, YADE User’s Manual (version 0.5), http://svn.berlios.
de/wsvn/yade/trunk/yade-doc/UserManual/YadeUserManual.tex?
op=file&rev=0&sc=0.

13

http://pkg-config.freedesktop.org
http://www.scons.org
http://freehackers.org/~tnagy/bksys.html
http://freehackers.org/~tnagy/bksys.html
http://www.geometrictool.com
yade-dev@lists.berlios.de
http://news.gmane.org/gmane.science.physics.yade.devel
http://news.gmane.org/gmane.science.physics.yade.devel
yade.berlios.de
http://svn.berlios.de/wsvn/yade/trunk/yade-doc/UserManual/YadeUserManual.tex?op=file&rev=0&sc=0
http://svn.berlios.de/wsvn/yade/trunk/yade-doc/UserManual/YadeUserManual.tex?op=file&rev=0&sc=0
http://svn.berlios.de/wsvn/yade/trunk/yade-doc/UserManual/YadeUserManual.tex?op=file&rev=0&sc=0

	Introduction
	Annoying issues
	Real future and imaginary vision
	Build system
	Refactoring
	Class renaming
	Unused and superfluous components
	File layout

	Plugin loader
	Parallelization
	Code vectorization
	Parallelization with shared memory
	Parallelization with message passing

	Reference benchmarks
	Scripting

	Conclusion

