Yade Reference Documentation

Vaclav Smilauer, Emanuele Catalano, Bruno Chareyre, Sergei
Dorofeenko, Jerome Duriez, Anton Gladky, Janek Kozicki, Chiara
Modenese, Luc Scholtes, Luc Sibille, Jan Stransky, Klaus Thoeni

February 17,2011
(1st edition - from release bzr2718)

Editor

Vaclav Smilauer
CVUT Prague - lab. 3SR Grenoble University

Authors

Vaclav Smilauer
CVUT Prague - lab. 3SR Grenoble University

Emanuele Catalano
Grenoble INP, UJF, CNRS, lab. 3SR

Bruno Chareyre
Grenoble INP, UJF, CNRS, lab. 3SR

Sergei Dorofeenko
IPCP RAS, Chernogolovka

Jerome Duriez
Grenoble INP, UJF, CNRS, lab. 3SR

Anton Gladky
TU Bergakademie Freiberg

Janek Kozicki
Gdansk University of Technology - lab. 3SR Grenoble University

Chiara Modenese
University of Oxford

Luc Scholtes
Grenoble INP, UJF, CNRS, lab. 3SR

Luc Sibille
University of Nantes, lab. GeM

Jan Stransky
CVUT Prague

Klaus Thoeni
University of Newcastle (Australia)

Citing this document
Please use the following reference, as explained at http://yade-dem/doc/citing.html:

V. Smilauer, E. Catalano, B. Chareyre, S. Dorofeenko, J. Duriez, A. Gladky, J. Kozicki, C.
Modenese, L. Scholtes, L. Sibille, J. Stransky, K. Thoeni (2010), Yade Reference Documentation.
In Yade Documentation (V. Smilauer, ed.), The Yade Project , 1st ed. (http://yade-dem.org/doc/)

http://yade-dem.org/doc/

Abstract

This chapter describes all high level classes and functions, including contact laws, boundary controllers,
pre- and post-processing tools. Keywords: Contact laws, boundary conditions, preprocessing, postpro-
cessing.

Contents

1 Class reference (yade.wrapper module)

1.1 Bodies o e e e
1.2 Interactions L e e e
1.3 Global engines L e
1.4 Partial engines e e e
1.5 Bounding volume creation
1.6 Interaction Geometry creation L L Lo
1.7 Interaction Physics creation L
1.8 Constitutive laws L L e
1.9 Callbacks e
1.10 Preprocessors v i i e e e e e e e e e e
1.11 Rendering 0 e e e
1.12 Simulation data oL e
1.13 Other classes o o o o e
2 Yade modules
2.1 yade.eudoxos module e e e
2.2 yadeexport module
2.3 yadelinterpolation module oL oL Lo
24 yadelogmodule e
2.5 yade.pack module
2.6 yade.plot module.o
2.7 yade.post2d module e
2.8 yade.gt moduleo
2.9 yade.timing module
2.10 yade.utils moduleo
2.11 yade.ymport module e e e
3 External modules
3.1 miniEigen (math) module L L
3.2 gts (GNU Triangulated surface) module o ..
Bibliography

Python Module Index

10
23
50
58
60
65
69
5
76
86
91
98

103
103
105
106
107
107
115
119
121
123
124
138

141
141
144

155

161

Chapter 1

Class reference (yade.wrapper
module)

1.1 Bodies

1.1.1 Body

class yade.wrapper.Body (inherits Serializable)
A particle, basic element of simulation; interacts with other bodies.

aspherical (=false)
Whether this body has different inertia along principal axes; NewtonIntegrator makes use of
this flag to call rotation integration routine for aspherical bodies, which is more expensive.

bound (=uninitalized)
Bound, approximating volume for the purposes of collision detection.

bounded (=true)
Whether this body should have Body.bound created. Note that bodies without a bound do
not participate in collision detection. (In ¢++, use Body: : isBounded/Body: : setBounded)

clumpld
Id of clump this body makes part of;, invalid number if not part of clump; see
Body::isStandalone, Body::isClump, Body::isClumpMember properties.

Not meant to be modified directly from Python, use O.bodies.appendClumped instead.

dynamic (=true)
Whether this body will be moved by forces. (In c++, use
Body: :isDynamic/Body: : setDynamic)

flags(=FLAG_BOUNDED)
Bits of various body-related flags. Do not access directly. In c++, wuse isDy-

namic/setDynamic, isBounded/setBounded, isAspherical/setAspherical. In python, use
Body.dynamic, Body.bounded, Body.aspherical.

groupMask(=1)

Bitmask for determining interactions.
id(=Body::ID_NONE)

Unique id of this body.

intrs() — list
Return all interactions in which this body participates.

Yade Reference Documentation, Release 1st edition

isClump
True if this body is clump itself, false otherwise.

isClumpMember
True if this body is clump member, false otherwise.

isStandalone
True if this body is neither clump, nor clump member; false otherwise.

mask
Shorthand for Body::groupMask

mat
Shorthand for Body::material

material (=uninitalized)
Material instance associated with this body.

shape (=uninitalized)
Geometrical Shape.

state(=new State)
Physical state.

1.1.2 Shape

Box

Facet

Sphere Cylinder ChainedCylinder

Shape

Tetra

Clump

class yade.wrapper.Shape (inherits Serializable)
Geometry of a body

color(=Vector3r(1, 1, 1))
Color for rendering (normalized RGB).

dispHierarchy([(bool)nameS:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical

indices.

dispIndex
Return class index of this instance.

highlight (=false)
Whether this Shape will be highlighted when rendered.

2 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

wire (=false)
Whether this Shape is rendered using color surfaces, or only wireframe (can still be overridden
by global config of the renderer).

class yade.wrapper.Box (inherits Shape — Serializable)
Box (cuboid) particle geometry. (Avoid using in new code, prefer Facet instead.

extents (=uninitalized)
Half-size of the cuboid

class yade.wrapper.ChainedCylinder (inherits Cylinder — Sphere — Shape — Serializable)
Geometry of a deformable chained cylinder, using geometry Cylinder.

chainedOrientation(=Quaternionr::Identity())
Deviation of nodel orientation from node-to-node vector

initLength(=0)
tensile-free length, used as reference for tensile strain

class yade.wrapper.Clump (inherits Shape — Serializable)
Rigid aggregate of bodies

members
Return clump members as {‘id1’:(relPos,relOri),...}

class yade.wrapper.Cylinder (inherits Sphere — Shape — Serializable)
Geometry of a cylinder, as Minkowski sum of line and sphere.

length(=NaN)
Length [m]

segment (= Vector3r::Zero())
Length vector

class yade.wrapper.Facet (inherits Shape — Serializable)
Facet (triangular particle) geometry.

vertices (=vector<Vector3r>(3, Vector3r(NaN, NaN, NaN)))
Vertex positions in local coordinates.

class yade.wrapper.Sphere (inherits Shape — Serializable)
Geometry of spherical particle.

radius(=NaN)
Radius [m]
class yade.wrapper.Tetra(inherits Shape — Serializable)

Tetrahedron geometry.

v (=std:vector<Vector3r>(4))
Tetrahedron vertices in global coordinate system.

class yade.wrapper.Wall (inherits Shape — Serializable)
Object representing infinite plane aligned with the coordinate system (axis-aligned wall).

axis(=0)
Axis of the normal; can be 0,1,2 for +x, +y, 4z respectively (Body’s orientation is disregarded
for walls)

sense (=0)
Which side of the wall interacts: -1 for negative only, 0 for both, +1 for positive only

1.1. Bodies 3

Yade Reference Documentation, Release 1st edition

1.1.3 State
CFpmState
RpmState
State ChainedState
CpmState
WireState

class yade.wrapper.State (inherits Serializable)
State of a body (spatial configuration, internal variables).

angMom (= Vector3r::Zero())
Current angular momentum

angVel (=Vector3r::Zero())
Current angular velocity

blockedDOFs
Degress of freedom where linear/angular velocity will be always constant (equal to zero, or to
an user-defined value), regardless of applied force/torque. String that may contain ‘xyzXYZ’
(translations and rotations).

dispHierarchy([(bool)nameS:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

displ() — Vector3
Displacement from reference position (pos - refPos

inertia(=Vector3r::Zero())
Inertia of associated body, in local coordinate system.

mass (=0)
Mass of this body

ori
Current orientation.

pos
Current position.

ref0ri(=Quaternionr::Identity())
Reference orientation

refPos (= Vector3r::Zero())
Reference position

rot () — Vector3
Rotation from reference orientation (as rotation vector)

4 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

se3(=Se3r(Vector3r::Zero(), Quaternionr::Identity()))
Position and orientation as one object.

vel (=Vector3r::Zero())
Current linear velocity.

class yade.wrapper.CFpmState (inherits State — Serializable)
CFpm state information about each body.

None of that is used for computation (at least not now), only for post-processing.

numBrokenCohesive (=0)
Number of broken cohesive links. [-]

class yade.wrapper.ChainedState (inherits State — Serializable)
State of a chained bodies, containing information on connectivity in order to track contacts jumping
over contiguous elements. Chains are 1D lists from which id of chained bodies are retrieved via
:yrefirank<ChainedState::rank>* and :yref:chainNumber<ChainedState::chainNumber>".

addToChain((int)bodyld) — None
Add body to current active chain

bId(=-1)
id of the body containing - for postLoad operations only

chainNumber (=0)
chain id

rank (=0)
rank in the chain

class yade.wrapper.CpmState (inherits State — Serializable)
State information about body use by cpm-model.

None of that is used for computation (at least not now), only for post-processing.

epsP1Broken(=0)
Plastic strain on contacts already deleted (bogus values)

epsVolumetric(=0)
Volumetric strain around this body (unused for now)

normDmg (=0)
Average damage including already deleted contacts (it is really not damage, but 1-
relResidualStrength now)

normEpsP1 (=0)
Sum of plastic strains normalized by number of contacts (bogus values)

numBrokenCohesive (=0)
Number of (cohesive) contacts that damaged completely

numContacts (=0)
Number of contacts with this body

sigma (= Vector3r::Zero())
Normal stresses on the particle

tau(=Vector3r::Zero())
Shear stresses on the particle.

class yade.wrapper.RpmState (inherits State — Serializable)
State information about Rpm body.

specimenMass (=0)
Indicates the mass of the whole stone, which owns the particle.

specimenMaxDiam(=0)
Indicates the maximal diametr of the specimen.

1.1. Bodies 5

Yade Reference Documentation, Release 1st edition

specimenNumber (=0)
The variable is used for particle size distribution analyze. Indicates, to which part of specimen
belongs para of particles.

specimenVol (=0)
Indicates the mass of the whole stone, which owns the particle.

class yade.wrapper.WireState (inherits State — Serializable)
Wire state information of each body.

None of that is used for computation (at least not now), only for post-processing.

numBrokenLinks (=0)
Number of broken links (e.g. number of wires connected to the body which are broken). [-]

1.1.4 Material

RpmMat
MomentMat

CpmMat
FrictMat

ElastMat CFpmMat
Material / WireMat

‘\
ViscEIMat NormallnelasticMat

CohFrictMat

class yade.wrapper.Material (inherits Serializable)
Material properties of a body.

density(=1000)
Density of the material [kg/m?|

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

id(=-1, not shared)
Numeric id of this material; is non-negative only if this Material is shared (i.e. in O.materials),
-1 otherwise. This value is set automatically when the material is inserted to the simulation
via O.materials.append. (This id was necessary since before boost::serialization was used,
shared pointers were not tracked properly; it might disappear in the future)

label (=uninitalized)
Textual identifier for this material; can be used for shared materials lookup in Material Con-
tainer.

newAssocState() — State
Return new State instance, which is associated with this Material. Some materials have

6 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

special requirement on Body::state type and calling this function when the body is created
will ensure that they match. (This is done automatically if you use utils.sphere, ... functions
from python).

class yade.wrapper.CFpmMat (inherits FrictMat — ElastMat — Material — Serializable)

cohesive frictional material, for use with other CFpm classes

type(=0)
Type of the particle. If particles of two different types interact, it will be with friction only
(no cohesion).[-]

class yade.wrapper.CohFrictMat (inherits FrictMat — FElastMat — Material — Serializable)

alphaKr (=2.0)
Dimensionless coefficient used for the rolling stiffness.

alphaKtw(=2.0)
Dimensionless coefficient used for the twist stiffness.

etaRoll(=-1.)
Dimensionless coefficient used to calculate the plastic rolling moment (if negative, plasticity
will not be applied).

isCohesive (=true)

momentRotationLaw (=false)
Use bending/twisting moment at contact. The contact will have moments only if both bodies
have this flag true. See CohFrictPhys::cohesionDisablesFriction for details.

normalCohesion(=0)

shearCohesion(=0)

class yade.wrapper.CpmMat (inherits FrictMat — FlastMat — Material — Serializable)

Concrete material, for use with other Cpm classes.

Note: Density is initialized to 4800 kgm 3automatically, which gives approximate 2800 kgm 3 on
0.5 density packing.

The model is contained in externally defined macro CPM__MATERIAL_MODEL, which features
damage in tension, plasticity in shear and compression and rate-dependence. For commercial rea-
sons, rate-dependence and compression-plasticity is not present in reduced version of the model,
used when CPM__ MATERIAL MODEL is not defined. The full model will be described in de-
tail in my (Véclav Smilauer) thesis along with calibration procedures (rigidity, poisson’s ratio,
compressive/tensile strength ratio, fracture energy, behavior under confinement, rate-dependent
behavior).

Even the public model is useful enough to run simulation on concrete samples, such as uniaxial
tension-compression test.

G_over_E(=NaN)
Ratio of normal/shear stiffness at interaction level [-]

dmgRateExp (=0)
Exponent for normal viscosity function. [-]

dmgTau(=-1, deactivated if negative)
Characteristic time for normal viscosity. [s]

epsCrackOnset (=NalN)
Limit elastic strain [-]

isoPrestress(=0)
Isotropic prestress of the whole specimen. [Pa]

neverDamage (=false)
If true, no damage will occur (for testing only).

1.1.

Bodies 7

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/concrete/uniax.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/concrete/uniax.py

Yade Reference Documentation, Release 1st edition

plRateExp(=0)
Exponent for visco-plasticity function. -]

plTau(=-1, deactivated if negative)
Characteristic time for visco-plasticity. [s]

relDuctility(=NaN)
Relative ductility, for damage evolution law peak right-tangent. [-]

sigmaT(=NaN)
Initial cohesion [Pa]

class yade.wrapper.ElastMat (inherits Material — Serializable)
Purely elastic material. The material parameters may have different meanings depending on the
[PhysFunctor used : true Young and Poisson in Ip2 FrictMat_FrictMat MindlinPhys, or contact
stiffnesses in Ip2 FrictMat_ FrictMat_ FrictPhys.

poisson(=.25)
Poisson’s ratio [-]

young(=1e9)
Young’s modulus [Pa]

class yade.wrapper.FrictMat (inherits ElastMat — Material — Serializable)
Elastic material with contact friction. See also ElastMat.

frictionAngle(=.5)
Contact friction angle (in radians). Hint : use ‘radians(degreesValue)’ in python scripts.

class yade.wrapper.MomentMat (inherits FrictMat — ElastMat — Material — Serializable)
Material for constitutive law of (Plassiard & al., 2009); see Law2_SCG_ MomentPhys_Cohesion-
lessMomentRotation for details.

Users can input eta (constant for plastic moment) to Spheres and Boxes. For more complicated
cases, users can modify TriaxialStressController to use different eta values during isotropic com-
paction.

eta(=0)
(has to be stored in this class and not by ContactLaw, because users may want to change its
values before/after isotropic compaction.)

class yade.wrapper.NormalInelasticMat (inherits FrictMat — ElastMat — Material — Serial-

izable)
Material class for particles whose contact obey to a normal inelasticity (governed by this coeff -

dech).

coeff_dech(=1.0)
=kn(unload) / kn(load)

class yade.wrapper.RpmMat (inherits FrictMat — FElastMat — Material — Serializable)
Rock material, for use with other Rpm classes.

Brittleness(=0)
One of destruction parameters. [-] //(Needs to be reworked)

G_over_E(=1)
Ratio of normal/shear stiffness at interaction level. [-]

exampleNumber (=0)
Number of the specimen. This value is equal for all particles of one specimen. [-]

initCohesive (=false)
The flag shows, whether particles of this material can be cohesive. [-]

stressCompressMax (=0)
Maximal strength for compression. The main destruction parameter. [Pa] //(Needs to be
reworked)

class yade.wrapper.ViscElMat (inherits Material — Serializable)
Material for simple viscoelastic model of contact.

8 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

Note: Shop: :getViscoelasticFromSpheresInteraction (and
utils.getViscoelasticFromSpheresInteraction in python) compute kn, cn, ks, c¢s from analyti-
cal solution of a pair spheres interaction problem.

cn(=NaN)
Normal viscous constant

cs(=NaN)
Shear viscous constant

frictionAngle(=NaN)
Friction angle [rad]

kn(=NaN)
Normal elastic stiffness

ks(=NaN)
Shear elastic stiffness

class yade.wrapper.WireMat (inherits ElastMat — Material — Serializable)

Material for use with the Wire classes

as(=0)
Cross-section area of a single wire used for the computation of the limit normal contact forces.
[m?]

diameter (=0.0027)

(Diameter of the single wire in [m] (the diameter is used to compute the cross-section area of
the wire).

isDoubleTwist (=false)
Type of the mesh. If true two particles of the same material which body ids differ by one will
be considered as double-twisted interaction.

lambdaEps (=0.4)
Parameter between 0 and 1 to reduce the failure strain of the double-twisted wire (as used by
[Bertrand2008]). [-]

lambdak (=0.21)
Parameter between 0 and 1 to compute the elastic stiffness of the double-twisted wire (as used
by [Bertrand2008]): kP = 2(Axkp + (1 — A)kS). [-]

strainStressValues (=uninitalized)
Piecewise linear definition of the stress-strain curve by set of points (strain[-]>0,stress[Pa]>0)
for one single wire. Tension only is considered and the point (0,0) is not needed!

1.1.5 Bound

Bound Aabb

class yade.wrapper.Bound (inherits Serializable)

Object bounding part of space taken by associated body; might be larger, used to optimalize
collision detection

color (=Vectordr(l, 1, 1))
Color for rendering this object

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,

1.1.

Bodies 9

Yade Reference Documentation, Release 1st edition

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

max (=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

min (=Vector3r(NaN, NaN, NaN))
Lower corner of box containing this bound (and the Body as well)

class yade.wrapper.Aabb (inherits Bound — Serializable)
Axis-aligned bounding box, for use with InsertionSortCollider. (This class is quasi-redundant since
min,max are already contained in Bound itself. That might change at some point, though.)

1.2 Interactions

1.2.1 Interaction

class yade.wrapper.Interaction(inherits Serializable)
Interaction between pair of bodies.

cellDist
Distance of bodies in cell size units, if using periodic boundary conditions; id2 is shifted by

this number of cells from its State::pos coordinates for this interaction to exist. Assigned by
the collider.

Warning: (internal) cellDist must survive Interaction::reset(), it is only initialized in
ctor. Interaction that was cancelled by the constitutive law, was reset() and became only
potential must have thepriod information if the geometric functor again makes it real.
Good to know after few days of debugging that :-)

geom(=uninitalized)
Geometry part of the interaction.

id1(=0)
Id of the first body in this interaction.
id2(=0

Id of the first body in this interaction.

isReal
True if this interaction has both geom and phys; False otherwise.

iterMadeReal (=-1)
Step number at which the interaction was fully (in the sense of geom and phys) created.

(Should be touched only by IPhysDispatcher and InteractionLoop, therefore they are made
friends of Interaction

phys (=uninitalized)
Physical (material) part of the interaction.

10 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

1.2.2 1Geom
’ Dem3DofGeom_SphereSphere ‘
Dem3DofGeom_FacetSphere ‘
Dem3DofGeom
Dem3DofGeom_WallSphere ‘
’ GenericSpheresContact
IGeom

TTetraGeom ScGeom6D
CylScGeom

class yade.wrapper.IGeom(inherits Serializable)
Geometrical configuration of interaction

dispHierarchy([(bool)names:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,
top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

class yade.wrapper.CylScGeom(inherits ScGeom — GenericSpheresContact — IGeom — Serial-
izable)

Geometry of a cylinder-sphere contact.

end (= Vector3r::Zero())
position of 2nd node (auto-updated)

id3(=0m
id of next chained cylinder (auto-updated)

isDuplicate(=0)
this flag is turned true (1) automaticaly if the contact is shared between two chained cylinders.
A duplicated interaction will be skipped once by the constitutive law, so that only one contact
at a time is effective. If isDuplicate=2, it means one of the two duplicates has no longer
geometric interaction, and should be erased by the constitutive laws.

onNode (=false)
contact on node?

relPos(=0)
position of the contact on the cylinder (0: node-, 1:node+) (auto-updated)

start (=Vector3r::Zero())
position of 1st node (auto-updated)

truelnt(=-1)
Defines the body id of the cylinder where the contact is real, when CylScGeom::isDuplicate>0.

class yade.wrapper.Dem3DofGeom (inherits GenericSpheresContact — IGeom — Serializable)
Abstract base class for representing contact geometry of 2 elements that has 3 degrees of freedom:
normal (1 component) and shear (Vector3r, but in plane perpendicular to the normal).

displacementN() — float

displacementT() — Vector3

1.2. Interactions 11

Yade Reference Documentation, Release 1st edition

logCompression (=false)
make strain go to -oco for length going to zero (false by default).

refLength(=uninitalized)
some length used to convert displacements to strains. (auto-computed)

se31(=uninitalized)
Copy of body #1 se3 (needed to compute torque from the contact, strains etc). (auto-updated)

se32(=uninitalized)
Copy of body #2 se3. (auto-updated)

slipToDisplacementTMax ((float)arg2) — float
slipToStrainTMax ((float)arg2) — float
strainN() — float

strainT() — Vector3

class yade.wrapper.Dem3DofGeom_FacetSphere (inherits Dem3DofGeom — GenericSpheresCon-

tact — IGeom — Serializable)
Class representing facet+sphere in contact which computes 3 degrees of freedom (normal and shear

deformation).

cplpt (=uninitalized)
Reference contact point on the facet in facet-local coords.

cp2rel (=uninitalized)
Orientation between +x and the reference contact point (on the sphere) in sphere-local coords

effR2 (=uninitalized)
Effective radius of sphere

localFacetNormal (=uninitalized)
Unit normal of the facet plane in facet-local coordinates

class yade.wrapper.Dem3DofGeom_SphereSphere (inherits Dem3DofGeom — — Generic-

SpheresContact — IGeom — Serializable)
Class representing 2 spheres in contact which computes 3 degrees of freedom (normal and shear

deformation).

cplrel (=uninitalized)
Sphere’s #1 relative orientation of the contact point with regards to sphere-local +x axis
(quasi-constant)

cp2rel (=uninitalized)
Same as cplrel, but for sphere #2.

effR1 (=uninitalized)
Effective radius of sphere #1; can be smaller/larger than refR1 (the actual radius), but quasi-
constant throughout interaction life

effR2 (=uninitalized)
Same as effR1, but for sphere #2.

class yade.wrapper.Dem3DofGeom_WallSphere (inherits Dem3DofGeom — GenericSpheresCon-
tact — IGeom — Serializable)
Representation of contact between wall and sphere, based on Dem3DofGeom.
cplpt (=uninitalized)
initial contact point on the wall, relative to the current contact point
cp2rel (=uninitalized)
orientation between +x and the reference contact point (on the sphere) in sphere-local coords

effR2 (=uninitalized)
effective radius of sphere

12 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

class yade.wrapper.GenericSpheresContact (inherits [Geom — Serializable)
Class uniting ScGeom and Dem3DofGeom, for the purposes of GlobalStiffnessTimeStepper. (It
might be removed inthe future). Do not use this class directly.

contactPoint (=uninitalized)
some reference point for the interaction (usually in the middle). (auto-computed)

normal (=uninitalized)
Unit vector oriented along the interaction, from particle #1, towards particle #2. (auto-
updated)

refR1 (=uninitalized)
Reference radius of particle #1. (auto-computed)

refR2(=uninitalized)
Reference radius of particle #2. (auto-computed)

class yade.wrapper.L3Geom(inherits GenericSpheresContact — IGeom — Serializable)
Geometry of contact given in local coordinates with 3 degress of freedom: normal and two in shear
plane. [experimental]

F(=Vector8r::Zero())
Applied force in local coordinates [debugging only, will be removed]

trst (=Matriz3r::Identity())
Transformation (rotation) from global to local coordinates. (the translation part is in Gener-
icSpheresContact .contact,PoinL)

u(=Vector3r::Zero())
Displacement components, in local coordinates. (auto-updated)

u0
Zero displacement value; u0 should be always subtracted from the geometrical displacement
u computed by appropriate IGeomFunctor, resulting in u. This value can be changed for
instance

1.by IGeomFunctor, e.g. to take in account large shear displacement value unrepresentable
by underlying geomeric algorithm based on quaternions)

2.by LawFunctor, to account for normal equilibrium position different from zero geometric
overlap (set once, just after the interaction is created)

3.by LawFunctor to account for plastic slip.

Note: Never set an absolute value of w0, only increment, since both IGeomFunctor and
LawFunctor use it. If you need to keep track of plastic deformation, store it in [Phys isntead
(this might be changed: have w0 for LawFunctor exclusively, and a separate value stored
(when that is needed) inside classes deriving from L3Geom.

class yade.wrapper.L6Geom(inherits L3Geom — GenericSpheresContact — IGeom — Serializ-
able)
Geometric of contact in local coordinates with 6 degrees of freedom. [experimental]
phi (=Vector3r::Zero())
Rotation components, in local coordinates. (auto-updated)

phi0(=Vector3r::Zero())
Zero rotation, should be always subtracted from phi to get the value. See L3Geom.u0.

class yade.wrapper.ScGeom(inherits GenericSpheresContact — IGeom — Serializable)
Class representing geometry of a contact point between two bodies with a non-spherical bodies
(Facet, Plane, Box, ChainedCylinder), or between non-spherical bodies. The contact has 3 DOFs
(normal and 2xshear) and uses incremental algorithm for updating shear.

We use symbols x, v, w respectively for position, linear and angular velocities (all in global
coordinates) and r for particles radii; subscripted with 1 or 2 to distinguish 2 spheres in contact.

1.2. Interactions 13

Yade Reference Documentation, Release 1st edition

Then we compute unit contact normal
X2 —X

n=_-—- "
IIx2 —x1]l

Relative velocity of spheres is then
vi2 = (v2 + w3z X (—T2n)) — (vi + wy x (1n))
and its shear component
AvS, =vio— (n-vin.
Tangential displacement increment over last step then reads

S _ S
X1, = Atvy,.

incidentVel(([ntemction)i[7 (bool)avoidGmnularRatcheting:True]) — Vector3
Return incident velocity of the interaction.

penetrationDepth(=NalN)
Penetration distance of spheres (positive if overlapping)

relAngVel ((Interaction)i) — Vector3
Return relative angular velocity of the interaction.

shearInc (= Vector3r::Zero())
Shear displacement increment in the last step

class yade.wrapper.ScGeom6D (inherits ScGeom — GenericSpheresContact — IGeom — Serial-

izable)
Class representing geometry of two bodies in contact. The contact has 6 DOFs (normal, 2xshear,

twist, 2xbending) and uses ScGeom incremental algorithm for updating shear.

bending (=Vector3r::Zero())
Bending at contact as a vector defining axis of rotation and angle (angle=norm).

initialOrientationl (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 1 one at initialisation time (auto-updated)

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Orientation of body 2 one at initialisation time (auto-updated)

twist (=0)
Elastic twist angle of the contact.

twistCreep (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Stored creep, substracted from total relative rotation for computation of elastic moment (auto-
updated)

class yade.wrapper.TTetraGeom(inherits IGeom — Serializable)

Geometry of interaction between 2 tetrahedra, including volumetric characteristics

contactPoint (=uninitalized)
Contact point (global coords)

equivalentCrossSection(=NaN)
Cross-section of the overlap (perpendicular to the axis of least inertia

equivalentPenetrationDepth(=NalN)
27

maxPenetrationDepthA(=NaN)
77

maxPenetrationDepthB(=NaN)
77

14

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

normal (=uninitalized)
Normal of the interaction, directed in the sense of least inertia of the overlap volume

penetrationVolume (=NaN)
Volume of overlap [m?]

1.2.3 IPhys

NormallnelasticityPhys ‘

CFpmPhys

NormShearPhys

’ IPhys H NormPhys
WirePhys

/I

class yade.wrapper.IPhys (inherits Serializable)
Physical (material) properties of interaction.

dispHierarchy([(bool)nameS:True]) — list
Return list of dispatch classes (from down upwards), starting with the class instance itself,

top-level indexable at last. If names is true (default), return class names rather than numerical
indices.

dispIndex
Return class index of this instance.

class yade.wrapper.CFpmPhys (inherits NormShearPhys — NormPhys — IPhys — Serializable)
Representation of a single interaction of the CFpm type, storage for relevant parameters

FnMax (=0)
Defines the maximum admissible normal force in traction Fn-
Max=tensileStrength*crossSection, with crossSection=pi*Rmin"2. [Pa]

FsMax (=0)

Defines the maximum admissible tangential force in shear FsMax=cohesion*FnMax, with
crossSection=pi*Rmin"2. [Pa]

cumulativeRotation(=0)

Cumulated rotation... [-]

frictionAngle(=0)
defines Coulomb friction. [deg]

initD(=0)
equilibrium distance for particles. Computed as the initial interparticular distance when
bonded particle interact. initD=0 for non cohesive interactions.

1.2. Interactions 15

Yade Reference Documentation, Release 1st edition

initialOrientationl (=Quaternionr(1.0, 0.0, 0.0, 0.0))
Used for moment computation.

initialOrientation2(=Quaternionr(1.0, 0.0, 0.0, 0.0))
Used for moment computation.

isCohesive (=false)
If false, particles interact in a frictional way. If true, particles are bonded regarding the given
cohesion and tensileStrength.

kr (=0)
Defines the stiffness to compute the resistive moment in rotation. [-]

maxBend (=0)
Defines the maximum admissible resistive moment in rotation Mtmax=maxBend*Fn,
maxBend=eta*meanRadius. [m]

moment_bending (= Vector3r::Zero())
[N.m)]

moment_twist (=VectorSr::Zero())
[N.m]

prevNormal (=Vector3r::Zero())
Normal to the contact at previous time step.

strengthSoftening(=0)
Defines the softening when Dtensile is reached to avoid explosion. Typically, when D >
Dtensile, Fn=FnMax - (kn/strengthSoftening)*(Dtensile-D). [-]

tanFrictionAngle (=0)
Tangent of frictionAngle. [-]

class yade.wrapper.CSPhys (inherits NormShearPhys — NormPhys — IPhys — Serializable)
Physical properties for Cundall&Strack constitutive law, created by Ip2 2xFrictMat_CSPhys.

frictionAngle(=NalN)
Friction angle of the interaction. (auto-computed)

tanFrictionAngle(=NaN)
Precomputed tangent of CSPhys::frictionAngle. (auto-computed)

class yade.wrapper.CapillaryPhys (inherits FrictPhys — NormShearPhys — NormPhys —

IPhys — Serializable)
Physics (of interaction) for Law2_ ScGeom_ CapillaryPhys_ Capillarity.

CapillaryPressure(=0.)
Value of the capillary pressure Uc defines as Ugas-Uliquid

Deltal(=0.)
Defines the surface area wetted by the meniscus on the smallest grains of radius R1 (R1<R2)

Delta2(=0.)
Defines the surface area wetted by the meniscus on the biggest grains of radius R2 (R1<R2)

Fcap (=Vectorsr::Zero())
Capillary Force produces by the presence of the meniscus

Vmeniscus (=0.)
Volume of the menicus

fusionNumber (=0.)
Indicates the number of meniscii that overlap with this one

meniscus (=false)
Presence of a meniscus if true

class yade.wrapper.CohFrictPhys (inherits FrictPhys — NormShearPhys — NormPhys — IPhys
— Serializable)

16 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

cohesionBroken (=true)
is cohesion active? will be set false when a fragile contact is broken

cohesionDisablesFriction(=false)
is shear strength the sum of friction and adhesion or only adhesion?

creep_viscosity(=-1)
creep viscosity [Pa.s/m].

creepedShear (= Vectorsr(0, 0, 0))
Creeped force (parallel)

fragile(=true)
do cohesion disapear when contact strength is exceeded?

kr(=0)
rotational stiffness [N.m/rad]

ktw(=0)
twist stiffness [N.m/rad]

maxRol11P1 (=0.0)
Coeflicient to determine the maximum plastic rolling moment.

maxTwistMoment (= Vector3r::Zero())
Maximum elastic value for the twisting moment (if zero, plasticity will not be applied). In
CohFrictMat a parameter should be added to decide what value should be attributed to this
threshold value.

momentRotationLaw (=false)
use bending/twisting moment at contacts. See CohFrictPhys::cohesionDisablesFriction for
details.

moment_bending (= Vector3r(0, 0, 0))
Bending moment

moment_twist (=Vectorsr(0, 0, 0))
Twist moment

normalAdhesion(=0)
tensile strength

shearAdhesion(=0)
cohesive part of the shear strength (a frictional term might be added depending on Law2 -
ScGeom6D__CohFrictPhys CohesionMoment::always_use moment_ law)

unp (=0)
plastic normal displacement, only wused for tensile behaviour and if CohFrict-
Phys::fragile‘=false. :ydefault:‘0

unpMax (=0)
maximum value of plastic normal displacement, after that the interaction breaks even if Co-
hFrictPhys::fragile‘=false. The default value (0) means no maximum. :ydefault:‘0

class yade.wrapper.CpmPhys (inherits NormShearPhys — NormPhys — IPhys — Serializable)

Representation of a single interaction of the Cpm type: storage for relevant parameters.

Evolution of the contact is governed by Law2 Dem3DofGeom CpmPhys Cpm, that includes
damage effects and chages of parameters inside CpmPhys. See cpm-model for details.

E(=NaN)
normal modulus (stiffness / crossSection) [Pal

Fn
Magnitude of normal force.

Fs
Magnitude of shear force

1.2.

Interactions 17

Yade Reference Documentation, Release 1st edition

G(=NaN)
shear modulus [Pa]

crossSection(=NaN)
equivalent cross-section associated with this contact [m?]

dmgOverstress(=0)
damage viscous overstress (at previous step or at current step)

dmgRateExp (=0)
exponent in the rate-dependent damage evolution
dmgStrain(=0)
damage strain (at previous or current step)
dmgTau(=-1)
characteristic time for damage (if non-positive, the law without rate-dependence is used)

epsCrackOnset (=NaN)
strain at which the material starts to behave non-linearly

epsFracture (=NaN)
strain where the damage-evolution law tangent from the top (epsCrackOnset) touches the axis;
since the softening law is exponential, this doesn’t mean that the contact is fully damaged at
this point, that happens only asymptotically

epsN
Current normal strain

epsNP1(=0)
normal plastic strain (initially zero)

epsP1Sum(=0)
cummulative shear plastic strain measure (scalar) on this contact
epsT(=VectorSr::Zero())

Total shear strain (either computed from increments with ScGeom or simple copied with
Dem3DofGeom) (auto-updated)

epsTrans (=0)
Transversal strain (perpendicular to the contact axis)

isCohesive (=false)
if not cohesive, interaction is deleted when distance is greater than zero.

isoPrestress(=0)
“prestress” of this link (used to simulate isotropic stress)
kappaD (=0)
Up to now maximum normal strain (semi-norm), non-decreasing in time.

neverDamage (=false)
the damage evolution function will always return virgin state

omega
Damage internal variable

plRateExp (=0)
exponent in the rate-dependent viscoplasticity

plTau(=-1)
characteristic time for viscoplasticity (if non-positive, no rate-dependence for shear)

relResidualStrength

Relative residual strength
sigmaN

Current normal stress
sigmaT

Current shear stress

18

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

tanFrictionAngle(=NaN)
tangens of internal friction angle [-]

undamagedCohesion(=NaN)
virgin material cohesion [Pa]

class yade.wrapper.FrictPhys (inherits NormShearPhys — NormPhys — IPhys — Serializable)
The simple linear elastip-plastic interaction with friction angle, like in the traditional [Cundall-
Strack1979]

tangensO0fFrictionAngle(=NaN)
tan of angle of friction

class yade.wrapper.MindlinPhys (inherits FrictPhys — NormShearPhys — NormPhys — IPhys

— Serializable)
Representation of an interaction of the Hertz-Mindlin type.

Fs(=Vector2r::Zero())
Shear force in local axes (computed incrementally)

adhesionForce (=0.0)
Force of adhesion as predicted by DMT

alpha(=0.0)
Constant coefficient to define contact viscous damping for non-linear elastic force-displacement
relationship.

betan(=0.0)
Fraction of the viscous damping coefficient (normal direction) equal to =="—

n,crit '
betas (=0.0)
Fraction of the viscous damping coefficient (shear direction) equal to

isAdhesive (=false)
bool to identify if the contact is adhesive, that is to say if the contact force is attractive

Cs

s,crit

isSliding(=false)
check if the contact is sliding (useful to calculate the ratio of sliding contacts)

kno (=0.0)
Constant value in the formulation of the normal stiffness

kr (=0.0)
Rotational stiffness

kso(=0.0)
Constant value in the formulation of the tangential stiffness

ktw(=0.0)
Rotational stiffness

maxBendP1 (=0.0)
Coefficient to determine the maximum plastic moment to apply at the contact

momentBend (=Vector3r::Zero())
Artificial bending moment to provide rolling resistance in order to account for some degree of
interlocking between particles

momentTwist (=Vector3r::Zero())
Artificial twisting moment (no plastic condition can be applied at the moment)

normalViscous (=Vector3r::Zero())
Normal viscous component

prevU(=Vector3r::Zero())
Previous local displacement; only used with Law2 [3Geom_ FrictPhys HertzMindlin.

radius (=NaN)
Contact radius (only computed with Law2 ScGeom MindlinPhys Mindlin::calcEnergy)

1.2. Interactions 19

Yade Reference Documentation, Release 1st edition

shearElastic(=Vector3r::Zero())
Total elastic shear force

shearViscous (= Vector3r::Zero())
Shear viscous component

usElastic(=Vector3r::Zero())
Total elastic shear displacement (only elastic part)

usTotal (=Vector3r::Zero())
Total elastic shear displacement (elastic+plastic part)

class yade.wrapper.MomentPhys (inherits NormShearPhys — NormPhys — IPhys — Serializable)
Physical interaction properties for use with Law2 SCG MomentPhys CohesionlessMomentRo-
tation, created by Ip2_ MomentMat_MomentMat_MomentPhys.

Eta(=0)
7

cumulativeRotation(=0)
7

frictionAngle (=0)
Friction angle [rad]

initialOrientationl (=Quaternionr::Identity())
77

initialOrientation2(=Quaternionr::Identity())
7

kr(=0)
rolling stiffness

moment_bending (= Vector3r::Zero())
77

moment_twist (=VectorSr::Zero())
77

prevNormal (=Vector3r::Zero())
Normal in the previous step.

shear (=Vector3r::Zero())
77

tanFrictionAngle (=0)
Tangent of friction angle

class yade.wrapper.NormPhys (inherits IPhys — Serializable)
Abstract class for interactions that have normal stiffness.

kn(=NaN)
Normal stiffness

normalForce (=Vector3r::Zero())
Normal force after previous step (in global coordinates).

class yade.wrapper.NormShearPhys (inherits NormPhys — IPhys — Serializable)
Abstract class for interactions that have shear stiffnesses, in addition to normal stiffness. This class
is used in the PFC3d-style stiffness timestepper.
ks (=NaN)
Shear stiffness

shearForce (=Vector3r::Zero())
Shear force after previous step (in global coordinates).

20 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

class yade.wrapper.NormalInelasticityPhys (inherits FrictPhys — NormShearPhys — Norm-
Phys — IPhys — Serializable)
Physics (of interaction) for using Law2 ScGeom6D_ NormallnelasticityPhys Normallnelasticity :
with inelastic unloadings

forMaxMoment (=1.0)
parameter stored for each interaction, and allowing to compute the maximum value of the
exchanged torque : TorqueMax= forMaxMoment * NormalForce

knLower (=0.0)
the stifness corresponding to a virgin load for example

kr (=0.0)
the rolling stiffness of the interaction

moment_bending (= Vector3r(0, 0, 0))
Bending moment. Defined here, being initialized as it should be, to be used in Law2 -
ScGeom6D NormallnelasticityPhys Normallnelasticity

moment_twist (=Vector3r(0, 0, 0))
Twist moment. Defined here, being initialized as it should be, to be used in Law2 Sc-
Geom6D_NormallnelasticityPhys Normallnelasticity

previousFn(=0.0)
the value of the normal force at the last time step

previousun(=0.0)
the value of this un at the last time step

unMax (=0.0)
the maximum value of penetration depth of the history of this interaction

class yade.wrapper.RpmPhys (inherits NormShearPhys — NormPhys — IPhys — Serializable)
Representation of a single interaction of the Cpm type: storage for relevant parameters.

Evolution of the contact is governed by Law2_Dem3DofGeom_CpmPhys Cpm, that includes
damage effects and chages of parameters inside CpmPhys

E(=NaN)
normal modulus (stiffness / crossSection) [Pa]

G(=NaN)
shear modulus [Pa]

crossSection(=0)
equivalent cross-section associated with this contact [m?]

isCohesive (=false)
if not cohesive, interaction is deleted when distance is greater than lengthMaxTension or less
than lengthMaxCompression.

lengthMaxCompression(=0)
Maximal penetration of particles during compression. If it is more, the interaction is deleted
[m]

lengthMaxTension (=0)
Maximal distance between particles during tension. If it is more, the interaction is deleted
[m]

tanFrictionAngle(=NaN)

tangens of internal friction angle [-]

class yade.wrapper.ViscE1lPhys (inherits FrictPhys — NormShearPhys — NormPhys — IPhys
— Serializable)
IPhys created from ViscEIMat, for use with Law2 ScGeom_ ViscEIPhys Basic.
cn(=NaN)
Normal viscous constant

1.2. Interactions 21

Yade Reference Documentation, Release 1st edition

cs(=NaN)
Shear viscous constant

class yade.wrapper.ViscoFrictPhys (inherits FrictPhys — NormShearPhys — NormPhys —

IPhys — Serializable)
Temporary version of FrictPhys for compatibility with e.g. Law2 ScGeom6D Normallnelastici-

tyPhys_ Normallnelasticity

creepedShear (= Vector3r(0, 0, 0))
Creeped force (parallel)

class yade.wrapper.WirePhys (inherits NormPhys — IPhys — Serializable)

Representation of a single interaction of the WirePM type, storage for relevant parameters

displForceValues (=uninitalized)
Defines the values for force-displacement curve.

initD(=0)
Equilibrium distance for particles. Computed as the initial inter-particular distance when
particle are linked.

isDoubleTwist (=false)
If true the properties of the interaction will be defined as a double-twisted wire.

isLinked (=false)
If true particles are linked and will interact. Interactions are linked automatically by the
definition of the corresponding interaction radius. The value is false if the wire breaks (no
more interaction).

plastD
Plastic part of the inter-particular distance of the previous step.

Note: Only elastic displacements are reversible (the elastic stiffness is used for unloading)
and compressive forces are inadmissible. The compressive stiffness is assumed to be equal to
zero (see [Bertrand2005]).

stiffnessValues (=uninitalized)
Defines the values for the different stiffness (first value corresponds to elastic stiffness kn).

22

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

1.3 Global engines

1.3.1 GlobalEngine

‘ CapillaryStressRecorder ‘

‘ ParticleSizeDistrbutionRPMRecorder ‘

Recorder ForceRecorder
TriaxialStateRecorder

Collider |
77777 ‘ CohesiveStateRPMRecorder ‘

[™
| BoundaryController |

VTKRecorder

TimeStepper
GlobalStiffnessTimeStepper ‘

FacetTopologyAnalyzer

ResetRandomPosition

‘ CohesiveFrictionalContactLaw ‘

NewtonIntegrator

‘ Law2_ScGeom_CapillaryPhys_Capillarity ‘

TesselationWrapper

ForceResetter

TetraVolumetricLaw

MicroMacroAnalyser

SpheresFactory

CircularFactory

QuadroFactory

ElasticContactLaw

DragForceApplier

InteractionLoop

class yade.wrapper.GlobalEngine (inherits Engine — Serializable)
Engine that will generally affect the whole simulation (contrary to PartialEngine).

class yade.wrapper.CapillaryStressRecorder (inherits Recorder — PeriodicEngine — Glob-

alEngine — Engine — Serializable)
Records information from capillary meniscii on samples submitted to triaxial compressions. ->

New formalism needs to be tested!!!

class yade.wrapper.CircularFactory (inherits SpheresFactory — GlobalEngine — Engine —

Serializable)
Circular geometry of the SpheresFactory region. It can be disk (given by radius and center), or

cylinder (given by radius, length and center).

1.3. Global engines 23

Yade Reference Documentation, Release 1st edition

center (=Vector3r(NaN, NaN, NaN))

Center of the region
length(=0)

Length of the cylindrical region (0 by default)
radius(=NaN)

Radius of the region

class yade.wrapper.CohesiveFrictionalContactLaw (inherits GlobalEngine — Engine — Seri-

alizable)
[DEPRECATED] Loop over interactions applying Law2_ScGeom6D__CohFrictPhys CohesionMo-

ment on all interactions.

Note: Use InteractionLoop and Law2 ScGeom6D CohFrictPhys CohesionMoment instead of
this class for performance reasons.

always_use_moment_law(=false)
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

creepStiffness(=10)

creep_viscosity(=false)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_CohFrictMat_ CohFrictMat_ -
CohFrictPhys...

neverErase (=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2 ScGeom CapillaryPhys Capillarity)

shear_creep (=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep viscosity.

shear_creep2(=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep viscosity.

twist_creep (=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep viscosity.

class yade.wrapper.CohesiveStateRPMRecorder (inherits Recorder — PeriodicEngine — Glob-

alEngine — Engine — Serializable)
Store number of cohesive contacts in RPM model to file.

numberCohesiveContacts (=0)
Number of cohesive contacts found at last run. [-]

class yade.wrapper.CpmStateUpdater (inherits PeriodicEngine — GlobalEngine — FEngine —

Serializable)
Update CpmState of bodies based on state variables in CpmPhys of interactions with this bod. In

particular, bodies’ colors and CpmState::normDmg depending on average damage of their interac-
tions and number of interactions that were already fully broken and have disappeared is updated.
This engine contains its own loop (2 loops, more precisely) over all bodies and should be run
periodically to update colors during the simulation, if desired.

avgRelResidual (=NaN)
Average residual strength at last run.

maxOmega (=NalN)
Globally maximum damage parameter at last run.

class yade.wrapper.DomainLimiter (inherits PeriodicEngine — GlobalEngine — Engine — Se-

rializable)
Delete particles that are out of axis-aligned box given by lo and hi.

hi (=Vector3r(0, 0, 0))
Upper corner of the domain.

24 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

lo(=Vector3r(0, 0, 0))
Lower corner of the domain.

nDeleted (=0)
Cummulative number of particles deleted.

class yade.wrapper.DragForceApplier (inherits GlobalEngine — Engine — Serializable)
Apply drag force on particles, decelerating them proportionally to their linear velocities. The
applied force reads

v

Fa=——
T V2

pVI?CaA

where p is the medium density (density), v is particle’s velocity, A is particle projected area (disc),
Cgq is the drag coefficient (0.47 for Sphere),

Note: Drag force is only applied to spherical particles.

Warning: Not tested.

density(=0)
Density of the medium.

class yade.wrapper.ElasticContactLaw (inherits GlobalEngine — Engine — Serializable)
[DEPRECATED] Loop over interactions applying Law2 ScGeom_ FrictPhys CundallStrack on
all interactions.

Note: Use InteractionLoop and Law2 ScGeom_ FrictPhys CundallStrack instead of this class
for performance reasons.

neverErase (=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2 ScGeom CapillaryPhys Capillarity)

class yade.wrapper.FacetTopologyAnalyzer (inherits GlobalEngine — Engine — Serializable)
Initializer for filling adjacency geometry data for facets.

Common vertices and common edges are identified and mutual angle between facet faces is written
to Facet instances. If facets don’t move with respect to each other, this must be done only at the
beginng.

commonEdgesFound (=0)
how many common edges were identified during last run. (auto-updated)

commonVerticesFound (=0)
how many common vertices were identified during last run. (auto-updated)

projectionAxis (= Vector3r::UnitX())
Axis along which to do the initial vertex sort

relTolerance(=1e-4)
maximum distance of ‘identical’ vertices, relative to minimum facet size

class yade.wrapper.ForceRecorder (inherits Recorder — PeriodicEngine — GlobalEngine — En-

gine — Serializable)
Engine saves the resulting force affecting to Subscribed bodies. For instance, can be useful for

defining the forces, which affect to __buldozer__ during its work.

ids (=uninitalized)
Lists of bodies whose state will be measured

class yade.wrapper.ForceResetter (inherits GlobalEngine — Engine — Serializable)
Reset all forces stored in Scene:forces (0.forces in python). Typically, this is the first engine to

1.3. Global engines 25

http://en.wikipedia.org/wiki/Drag_equation

Yade Reference Documentation, Release 1st edition

be run at every step. In addition, reset those energies that should be reset, if energy tracing is
enabled.

class yade.wrapper.GlobalStiffnessTimeStepper (inherits TimeStepper — GlobalEngine —

Engine — Serializable)
An engine assigning the time-step as a fraction of the minimum eigen-period in the problem

defaultDt(=1)
used as default AND as max value of the timestep

previousDt(=1)
last computed dt (auto-updated)

timestepSafetyCoefficient (=0.8)
safety factor between the minimum eigen-period and the final assigned dt (less than 1))

class yade.wrapper.InteractionLoop (inherits GlobalEngine — Engine — Serializable)

Unified dispatcher for handling interaction loop at every step, for parallel performance reasons.

Special constructor

Constructs from 3 lists of Ig2, Ip2, Law functors respectively; they will be passed to interal dis-
patchers, which you might retrieve.

callbacks (=uninitalized)
Callbacks which will be called for every Interaction, if activated.

geomDispatcher (=new IGeomDispatcher)
IGeomDispatcher object that is used for dispatch.

lawDispatcher (=new LawDispatcher)
LawDispatcher object used for dispatch.

physDispatcher (=new IPhysDispatcher)
IPhysDispatcher object used for dispatch.

class yade.wrapper.Law2_ScGeom_CapillaryPhys_Capillarity (inherits GlobalEngine — FEn-

gine — Serializable)
This law allows to take into account capillary forces/effects between spheres coming from the

presence of interparticular liquid bridges (menisci).

refs:

1.in french [Scholtes2009d] (lot of documentation)
2.in english [Scholtes2009b] (less documentation), pg. 64-75.

The law needs ascii files M(=i) with i=R1/R2 to work (see https://yade-
dem.org/index.php/CapillaryTriaxialTest). These ASCII files contain a set of results from
the resolution of the Laplace-Young equation for different configurations of the interacting
geometry.

The control parameter is the capillary pressure (or suction) Uc = ugas - Uliquid. Liquid bridges
properties (volume V, extent over interacting grains deltal and delta2) are computed as a result
of the defined capillary pressure and of the interacting geometry (spheres radii and interparticular
distance).

CapillaryPressure(=0.)
Value of the capillary pressure Uc defines as Uc=Ugas-Uliquid

binaryFusion(=true)
If true, capillary forces are set to zero as soon as, at least, 1 overlap (menisci fusion) is detected

fusionDetection(=false)
If true potential menisci overlaps are checked

26

Chapter 1. Class reference (yade.wrapper module)

https://yade-dem.org/index.php/CapillaryTriaxialTest
https://yade-dem.org/index.php/CapillaryTriaxialTest

Yade Reference Documentation, Release 1st edition

class yade.wrapper.MicroMacroAnalyser (inherits GlobalEngine — FEngine — Serializable)
Compute fabric tensor, local porosity, local deformation, and other micromechanicaly defined quan-
tities based on triangulation/tesselation of the packing.

compDeformation (=false)
Is the engine just saving states or also computing and outputing deformations for each incre-
ment?

compIncrt (=false)
Should increments of force and displacements be defined on [n,n+1]7 If not, states will be
saved with only positions and forces (no displacements).

incrtNumber (=1)

interval(=100)
Number of timesteps between analyzed states.

outputFile (="MicroMacroAnalysis”)
Base name for increment analysis output file.

stateFileName (="state”)
Base name of state files.

stateNumber (=0)
A number incremented and appended at the end of output files to reflect increment number.

class yade.wrapper.NewtonIntegrator (inherits GlobalEngine — Engine — Serializable)
Engine integrating newtonian motion equations.

damping (=0.2)
damping coefficient for Cundall’s non viscous damping (see [Chareyre2005]) [-]

exactAsphericalRot (=true)
Enable more exact body rotation integrator for aspherical bodies only, using formulation from
[Allen1989], pg. 89.

kinSplit (=false)
Whether to separately track translational and rotational kinetic energy.

maxVelocitySq(=NalN)
store square of max. velocity, for informative purposes; computed again at every step. (auto-
updated)

prevVelGrad (=Matriz3r::Zero())
Store previous velocity gradient (Cell::velGrad) to track acceleration. (auto-updated)

warnNoForceReset (=true)
Warn when forces were not resetted in this step by ForceResetter; this mostly points to
ForceResetter being forgotten incidentally and should be disabled only with a good reason.

class yade.wrapper.ParticleSizeDistrbutionRPMRecorder (inherits Recorder — Periodi-
cEngine — GlobalEngine — En-

gine — Serializable)
Store number of PSD in RPM model to file.

numberCohesiveContacts (=0)
Number of cohesive contacts found at last run. [-]

class yade.wrapper.PeriodicEngine (inherits GlobalEngine — Engine — Serializable)
Run Engine::action with given fixed periodicity real time (=wall clock time, computation time),
virtual time (simulation time), iteration number), by setting any of those criteria (virtPeriod,
realPeriod, iterPeriod) to a positive value. They are all negative (inactive) by default.

The number of times this engine is activated can be limited by setting nDo>0. If the number of
activations will have been already reached, no action will be called even if an active period has
elapsed.

1.3. Global engines 27

Yade Reference Documentation, Release 1st edition

If initRun is set (false by default), the engine will run when called for the first time; otherwise it
will only start counting period (realLast etc interal variables) from that point, but without actually
running, and will run only once a period has elapsed since the initial run.

This class should be used directly; rather, derive your own engine which you want to be run
periodically.

Derived engines should override Engine::action(), which will be called periodically. If the derived
Engine overrides also Engine::isActivated, it should also take in account return value from Periodi-
cEngine::isActivated, since otherwise the periodicity will not be functional.

Example with PyRunner, which derives from PeriodicEngine; likely to be encountered in python
scripts):

PyRunner (realPeriod=5,iterPeriod=10000, command="'print 0.iter')

will print iteration number every 10000 iterations or every 5 seconds of wall clock time, whiever
comes first since it was last run.

initRun(=false)
Run the first time we are called as well.

iterLast (=0)
Tracks step number of last run (auto-updated).

iterPeriod (=0, deactivated)
Periodicity criterion using step number (deactivated if <= 0)

nDo (=-1, deactivated)
Limit number of executions by this number (deactivated if negative)

nDone (=0)
Track number of executions (cummulative) (auto-updated).

reallast(=0)
Tracks real time of last run (auto-updated).

realPeriod (=0, deactivated)
Periodicity criterion using real (wall clock, computation, human) time (deactivated if <=0)

virtLast(=0)
Tracks virtual time of last run (auto-updated).

virtPeriod (=0, deactivated)
Periodicity criterion using virtual (simulation) time (deactivated if <= 0)

class yade.wrapper.PyRunner (inherits PeriodicEngine — GlobalEngine — Engine — Serializ-

able)
Execute a python command periodically, with defined (and adjustable) periodicity. See Periodi-

cEngine documentation for details.

command (="%)
Command to be run by python interpreter. Not run if empty.

class yade.wrapper.QuadroFactory (inherits SpheresFactory — GlobalEngine — Engine — Se-

rializable)
Quadro geometry of the SpheresFactory region, given by extents and center

center (=Vector3r(NaN, NaN, NaN))
Center of the region

extents (=Vector3r(NaN, NaN, NaN))
Extents of the region

class yade.wrapper.Recorder (inherits PeriodicEngine — GlobalEngine — Engine — Serializ-

le)

a
Engine periodically storing some data to (one) external file. In addition PeriodicEngine, it handles
opening the file as needed. See PeriodicEngine for controlling periodicity.

28

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

addIterNum(=false)
Adds an iteration number to the file name, when the file was created. Useful for creating new
files at each call (false by default)

file(=uninitalized)
Name of file to save to; must not be empty.

truncate (=false)
Whether to delete current file contents, if any, when opening (false by default)

class yade.wrapper.ResetRandomPosition (inherits GlobalEngine — Engine — Serializable)
Creates spheres during simulation, placing them at random positions. Every time called, one new
sphere will be created and inserted in the simulation.

angularVelocity (= Vector3r::Zero())
Mean angularVelocity of spheres.

angularVelocityRange (=Vector3r::Zero())
Half size of a angularVelocity distribution interval. New sphere will have random angularVe-
locity within the range angularVelocity+angularVelocityRange.

factoryFacets (=uninitalized)
The geometry of the section where spheres will be placed; they will be placed on facets or in
volume between them depending on volumeSection flag.

maxAttempts (=20)
Max attempts to place sphere. If placing the sphere in certain random position would cause
an overlap with any other physical body in the model, SpheresFactory will try to find another

position.
normal (=Vector3r(0, 1, 0))
77

point (=Vector3r::Zero())
77

subscribedBodies (=uninitalized)
Affected bodies.

velocity (=Vector3r::Zero())
Mean velocity of spheres.

velocityRange (=Vector3r::Zero())
Half size of a velocities distribution interval. New sphere will have random velocity within the
range velocitytvelocityRange.

volumeSection(=false, define factory by facets.)
Create new spheres inside factory volume rather than on its surface.

class yade.wrapper.SpheresFactory (inherits GlobalEngine — Engine — Serializable)
Engine for spitting spheres based on mass flow rate, particle size distribution etc. Initial velocity
of particles is given by vMin, vMaz, the massFlowRate determines how many particles to generate
at each step. When goalMass is attained or positive maxzParticles is reached, the engine does
not produce particles anymore. Geometry of the region should be defined in a derived engine by
overriden SpheresFactory::pickRandomPosition().

A sample script for this engine is in scripts/spheresFactory.py.

goalMass (=0)
Total mass that should be attained at the end of the current step. (auto-updated)

massFlowRate (=NalN)
Mass flow rate [kg/s]

materialld(=-1)
Shared material id to use for newly created spheres (can be negative to count from the end)

maxAttempt (=5000)
Maximum number of attempts to position a new sphere randomly.

1.3. Global engines 29

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/spheresFactory.py

Yade Reference Documentation, Release 1st edition

maxParticles(=100)
The number of particles at which to stop generating new ones (regardless of massFlowRate

normal (=Vector3r(NaN, NaN, NaN))
Spitting direction (and orientation of the region’s geometry).

numParticles(=0)
Cummulative number of particles produces so far (auto-updated)

rMax(=NaN)
Maximum radius of generated spheres (uniform distribution)

rMin(=NaN)
Minimum radius of generated spheres (uniform distribution)

silent (=false)
If true no complain about excessing maxAttempt but disable the factory (by set mass-
FlowRate=0).

totalMass (=0)
Mass of spheres that was produced so far. (auto-updated)

vAngle (=NaN)
Maximum angle by which the initial sphere velocity deviates from the nozzle normal.

vMax(=NalN)
Maximum velocity norm of generated spheres (uniform distribution)

vMin(=NaN)
Minimum velocity norm of generated spheres (uniform distribution)

class yade.wrapper.TesselationWrapper (inherits GlobalEngine — FEngine — Serializable)
Handle the triangulation of spheres in a scene, build tesselation on request, and give access to
computed quantities : currently volume and porosity of each Voronoi sphere. Example script :

tt=TriaxialTest()

tt.generate(‘test.xml’)

O.load(‘test.xml’)

O.run(100) //for unknown reasons, this procedure crashes at iteration 0
TW=TesselationWrapper()

TW.triangulate() //compute regular Delaunay triangulation, don’t construct tesselation
TW.computeVolumes() //will silently tesselate the packing

TW.volume(10) //get volume associated to sphere of id 10

Note: This engine needs yade built with ‘cgal’ feature.

computeVolumes() — None
Compute volumes of all Voronoi’s cells.

getVolPoroDef([(bool)deformation:False]) — dict
Return a table with per-sphere computed quantities. Include deformations on the increment
defined by states 0 and 1 if deformation=True (make sure to define states 0 and 1 consistently).

n_spheres(=0)
(auto-computed)

setState([(bool)state:O]) — None
Make the current state the initial (0) or final (1) configuration for the definition of displacement
increments, use only state=0 if you just want to get only volmumes and porosity.

triangulate([(bool)reset:True]) — None
triangulate spheres of the packing

30 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

volume([(z'nt)z’d:O]) — float
Returns the volume of Voronoi’s cell of a sphere.

class yade.wrapper.TetraVolumetricLaw(inherits GlobalEngine — Engine — Serializable)

Calculate physical response of 2 tetrahedra in interaction, based on penetration configuration given
by TTetraGeom.

class yade.wrapper.TimeStepper (inherits GlobalEngine — FEngine — Serializable)

Engine defining time-step (fundamental class)

active (=true)
is the engine active?

timeStepUpdateInterval(=1)
dt update interval

class yade.wrapper.TriaxialStateRecorder (inherits Recorder — PeriodicEngine — Glob-

alEngine — Engine — Serializable)
Engine recording triaxial variables (see the variables list in the first line of the output file). This
recorder needs TriaxialCompressionEngine or ThreeDTriaxialEngine present in the simulation).

porosity(=1)
porosity of the packing [-]

class yade.wrapper.VTKRecorder (inherits PeriodicEngine — GlobalEngine — Engine — Serial-

izable)
Engine recording snapshots of simulation into series of *.vtu files, readable by VTK-based post-

processing programs such as Paraview. Both bodies (spheres and facets) and interactions can be
recorded, with various vector/scalar quantities that are defined on them.

PeriodicEngine.initRun is initialized to True automatically.

ascii(=false)
Store data as readable text in the XML file (sets vtkXMLWriter data mode to
vtkXMLWriter: :Ascii, while the default is Appended

compress (=false)
Compress output XML files [experimental].

fileName (="%)
Base file name; it will be appended with {spheres,intrs,facets}-243100.vtu (unless multiblock
is True) depending on active recorders and step number (243100 in this case). It can contain
slashes, but the directory must exist already.

mask (=0)
If mask defined, only bodies with corresponding groupMask will be exported. If 0, all bodies
will be exported.

recorders
List of active recorders (as strings). all (the default value) enables all base and generic
recorders.

Base recorders

Base recorders save the geometry (unstructured grids) on which other data is defined. They
are implicitly activated by many of the other recorders. Each of them creates a new file (or a
block, if multiblock is set).

spheres Saves positions and radii (radii) of spherical particles.
facets Save facets positions (vertices).

intr Store interactions as lines between nodes at respective particles positions. Additionally
stores magnitude of normal (forceN) and shear (absForceT) forces on interactions (the
geom).

Generic recorders

1.3. Global engines 31

http://www.vtk.org/doc/nightly/html/classvtkXMLWriter.html

Yade Reference Documentation, Release 1st edition

Generic recorders do not depend on specific model being used and save commonly useful data.
id Saves id’s (field id) of spheres; active only if spheres is active.

clumpId Saves id’s of clumps to which each sphere belongs (field clumpId); active only if
spheres is active.

colors Saves colors of spheres and of facets (field color); only active if spheres or facets
are activated.

mask Saves groupMasks of spheres and of facets (field mask); only active if spheres or facets
are activated.

materialId Saves materiallD of spheres and of facets; only active if spheres or facets are
activated.

velocity Saves linear and angular velocities of spherical particles as Vector3 and length(fields
linVelVec, linVelLen and angVelVec, angVellen respectively‘‘); only effective with
spheres.

stress Saves stresses of spheres and of facets as Vector3 and length; only active if spheres
or facets are activated.

Specific recorders

The following should only be activated in appropriate cases, otherwise crashes can
occur due to violation of type presuppositions.

cpm Saves data pertaining to the concrete model: cpmDamage (normalized residual
strength averaged on particle), cpmSigma (stress on particle, normal components),
cpmTau (shear components of stress on particle), cpmSigmaM (mean stress around
particle); intr is activated automatically by cpm

rpm Saves data pertaining to the rock particle model: rpmSpecNum shows different
pieces of separated stones, only ids. rpmSpecMass shows masses of separated
stones.

skipFacetIntr (=true)

Skip interactions with facets, when saving interactions

skipNondynamic (=false)

Skip non-dynamic spheres (but not facets).

32

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

1.3.2 BoundaryController

| Disp2DPropLoadEngine | KinemCTDEngine |

| Peri3dController | KinemCNSEngine |

| PerilsoCompressor |

g

KinemCNLEngine |

BoundaryController |<—| KinemSimpleShearBox | KinemCNDEnNgine |

| TriaxialStressController i<7| TriaxialCompressionEngine |

| UniaxialStrainer | | ThreeDTriaxialEngine |

| PeriTriaxController | | SampleCapillaryPressureEngine |

class yade.wrapper.BoundaryController (inherits GlobalEngine — Engine — Serializable)

Base for engines controlling boundary conditions of simulations. Not to be used directly.

class yade.wrapper.Disp2DPropLoadEngine (inherits BoundaryController — GlobalEngine —

Engine — Serializable)
Disturbs a simple shear sample in a given displacement direction

This engine allows to apply, on a simple shear sample, a loading controlled by du/dgamma = cste,
which is equivalent to du + cste’ * dgamma = 0 (proportionnal path loadings). To do so, the upper
plate of the simple shear box is moved in a given direction (corresponding to a given du/dgamma),
whereas lateral plates are moved so that the box remains closed. This engine can easily be used
to perform directionnal probes, with a python script launching successivly the same .xml which
contains this engine, after having modified the direction of loading (see theta attribute). That’s
why this Engine contains a saveData procedure which can save data on the state of the sample at
the end of the loading (in case of successive loadings - for successive directions - through a python
script, each line would correspond to one direction of loading).

Key (— ” (()
string to add at the names of the saved files, and of the output file filled by saveData

LOG(=false)
boolean controling the output of messages on the screen

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront (=5)
the id of the wall in front of the sample

id_boxleft (=0)
the id of the left wall

id_boxright (=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

1.3.

Global engines 33

Yade Reference Documentation, Release 1st edition

nbre_iter(=0)
the number of iterations of loading to perform

theta(=0.0)
the angle, in a (gamma,h=-u) plane from the gamma - axis to the perturbation vector (trigo
wise) [degrees]

v(=0.0)
the speed at which the perturbation is imposed. In case of samples which are more sensitive
to normal loadings than tangential ones, one possibility is to take v.= V_shear - | (V__shear-
V__comp)*sin(theta) | => v=V_ shear in shear; V_ comp in compression [m/s]

class yade.wrapper.KinemCNDEngine (inherits KinemSimpleShearBox — BoundaryController —

GlobalEngine — Engine — Serializable)
To apply a Constant Normal Displacement (CND) shear for a parallelogram box

This engine, designed for simulations implying a simple shear box (SimpleShear Preprocessor or
scripts/simpleShear.py), allows to perform a constant normal displacement shear, by translating
horizontally the upper plate, while the lateral ones rotate so that they always keep contact with
the lower and upper walls.

gamma (=0.0)
the current value of the tangential displacement

gamma_save (=uninitalized)
vector with the values of gamma at which a save of the simulation is performed [m]

gammalim(=0.0)
the value of the tangential displacement at wich the displacement is stopped [m]

shearSpeed (=0.0)
the speed at which the shear is performed : speed of the upper plate [m/s]

class yade.wrapper.KinemCNLEngine (inherits KinemSimpleShearBox — BoundaryController —

GlobalEngine — Engine — Serializable)
To apply a constant normal stress shear (i.e. Constant Normal Load : CNL) for a parallelogram

box (simple shear box : SimpleShear Preprocessor or scripts/simpleShear.py)

This engine allows to translate horizontally the upper plate while the lateral ones rotate so that
they always keep contact with the lower and upper walls.

In fact the upper plate can move not only horizontally but also vertically, so that the normal stress
acting on it remains constant (this constant value is not chosen by the user but is the one that
exists at the beginning of the simulation)

The right vertical displacements which will be allowed are computed from the rigidity Kn of the
sample over the wall (so to cancel a deltaSigma, a normal dplt deltaSigma*S/(Kn) is set)

The movement is moreover controlled by the user via a shearSpeed which will be the speed of the
upper wall, and by a maximum value of horizontal displacement gammalim, after which the shear
stops.

Note: Not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: Because of this last point, if you want to use later saves of simulations executed
with this Engine, but without that stopMovement was executed, your boxes will keep their
speeds => you will have to cancel them ‘by hand’ in the .xml.

gamma (=0.0)
current value of tangential displacement [m]

gamma_save (=uninitalized)
vector with the values of gamma at which a save of the simulation is performed [m]

34

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

gammalim(=0.0)
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

shearSpeed (=0.0)
the speed at wich the shearing is performed : speed of the upper plate [m/s]

class yade.wrapper.KinemCNSEngine (inherits KinemSimpleShearBox — BoundaryController —

GlobalEngine — Engine — Serializable)
To apply a Constant Normal Stifness (CNS) shear for a parallelogram box (simple shear)

This engine, useable in simulations implying one deformable parallelepipedic box, allows to trans-
late horizontally the upper plate while the lateral ones rotate so that they always keep contact with
the lower and upper walls. The upper plate can move not only horizontally but also vertically, so
that the normal rigidity defined by DeltaF(upper plate)/DeltaU(upper plate) = constant (= KnC
defined by the user).

The movement is moreover controlled by the user via a shearSpeed which is the horizontal speed
of the upper wall, and by a maximum value of horizontal displacement gammalim (of the upper
plate), after which the shear stops.

Note: not only the positions of walls are updated but also their speeds, which is all but useless
considering the fact that in the contact laws these velocities of bodies are used to compute values
of tangential relative displacements.

Warning: But, because of this last point, if you want to use later saves of simulations
executed with this Engine, but without that stopMovement was executed, your boxes will keep
their speeds => you will have to cancel them by hand in the .xml

KnC(=10.0e6)
the normal rigidity chosen by the user [MPa/mm]| - the conversion in Pa/m will be made

gamma (=0.0)
current value of tangential displacement [m]

gammalim(=0.0)
the value of tangential displacement (of upper plate) at wich the shearing is stopped [m]

shearSpeed (=0.0)
the speed at wich the shearing is performed : speed of the upper plate [m/s]

class yade.wrapper.KinemCTDEngine (inherits KinemSimpleShearBox — BoundaryController —

GlobalEngine — Engine — Serializable)
To compress a simple shear sample by moving the upper box in a vertical way only, so that the

tangential displacement (defined by the horizontal gap between the upper and lower boxes) remains
constant (thus, the CTD = Constant Tangential Displacement). The lateral boxes move also to
keep always contact. All that until this box is submitted to a given stress (=*targetSigma*).
Moreover saves are executed at each value of stresses stored in the vector sigma_save, and at
targetSigma

compSpeed (=0.0)
(vertical) speed of the upper box : >0 for real compression, <0 for unloading [m/s]

sigma_save (=uninitalized)
vector with the values of sigma at which a save of the simulation should be performed [kPa]

targetSigma(=0.0)
the value of sigma at which the compression should stop [kPa]

class yade.wrapper.KinemSimpleShearBox (inherits BoundaryController — GlobalEngine — En-

gine — Serializable)
This class is supposed to be a mother class for all Engines performing loadings on the simple shear

box of SimpleShear. It is not intended to be used by itself, but its declaration and implentation
will thus contain all what is useful for all these Engines. The script simpleShear.py illustrates the
use of the various corresponding Engines.

1.3. Global engines 35

Yade Reference Documentation, Release 1st edition

Key (- ” (()
string to add at the names of the saved files

LOG (=false)
boolean controling the output of messages on the screen

alpha(=Mathr::P1/2.0)
the angle from the lower box to the left box (trigo wise). Measured by this Engine, not to be
changed by the user.

£0(=0.00
the (vertical) force acting on the upper plate on the very first time step (determined by the
Engine). Controls of the loadings in case of KinemCNSEngine or KinemCNLEngine will be
done according to this initial value [N]. Not to be changed by the user.]

firstRun(=true)
boolean set to false as soon as the engine has done its job one time : useful to know if initial
height of, and normal force sustained by, the upper box are known or not (and thus if they
have to be initialized). Not to be changed by the user.

id_boxback(=4)
the id of the wall at the back of the sample

id_boxbas(=1)
the id of the lower wall

id_boxfront (=5)
the id of the wall in front of the sample

id_boxleft (=0)
the id of the left wall

id_boxright (=2)
the id of the right wall

id_topbox(=3)
the id of the upper wall

max_vel(=1.0)
to limit the speed of the vertical displacements done to control o (CNL or CNS cases) [m/s]

temoin_save (=uninitalized)
vector (same length as ‘gamma_ save’ for ex), with 0 or 1 depending whether the save for the
corresponding value of gamma has been done (1) or not (0). Not to be changed by the user.

wallDamping(=0.2)
the vertical displacements done to to control ¢ (CNL or CNS cases) are in fact damped,
through this wallDamping

yo(=0.0)
the height of the upper plate at the very first time step : the engine finds its value [m]. Not
to be changed by the user.

class yade.wrapper.Peri3dController (inherits BoundaryController — GlobalEngine — Engine

— Serializable)
Class for controlling independently all 6 components of “engineering” stress and strain of periodic

:yref:¢“Cell’. goal are the goal values, while stressMask determines which components prescribe
stress and which prescribe strain.

If the strain is prescribed, appropeiate strain rate is directly applied. If the stress is prescribed,
the strain predictor is used: from stress values in two previous steps the value of strain rate is
prescribed so as the value of stress in the next step is as close as possible to the ideal one. Current
algorithm is extremly simple and probably will be changed in future, but is roboust enough and
mostly works fine.

Stress error (difference between actual and ideal stress) is evaluated in current and previous steps

36 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

(doi,doi_1. Linear extrapolation is used to estimate error in the next step

d()'i+1 = ZdO'i — dO'i,1

According to this error, the strain rate is modified by mod parameter

do- >0 — €41 = & —max(abs(&;)) - mod
W1 <0 &1 = & + max(abs(é;)) - mod

According to this fact, the prescribed stress will (almost) never have exact prescribed value, but the
difference would be very small (and decreasing for increasing nSteps. This approach works good if
one of the dominant strain rates is prescribed. If all stresses are prescribed or if all goal strains is
prescribed as zero, a good estimation is needed for the first step, therefore the compliance matrix
is estimated (from user defined estimations of macroscopic material parameters youngEstimation
and poissonEstimation) and respective strain rates is computed form prescribed stress rates and
compliance matrix (the estimation of compliance matrix could be computed autamatically avoiding
user inputs of this kind).

The simulation on rotated periodic cell is also supported. Firstly, the polar decomposition is
performed on cell’s transformation matrix trsf 7 = UP, where U is orthogonal (unitary) matrix
representing rotation and P is a positive semi-definite Hermitian matrix representing strain. A
logarithm of P should be used to obtain realistic values at higher strain values (not implemented
yet). A prescribed strain increment in global coordinates dt - € is properly rotated to cell’s local
coordinates and added to P

Pi =P+U"dt-eU

The new value of trsf is computed at T;; 1 = UPi 7. From current and next trsf the cell’s velocity
gradient velGrad is computed (according to its definition) as

V= (T T =1)/dt

Current implementation allow user to define independent loading “path” for each prescribed com-
ponent. i.e. define the prescribed value as a function of time (or progress or steps). See Paths.

Examples scripts/test/peri3dController examplel and scripts/test/peri3dController triaxial-
Compression explain usage and inputs of Peri3dController, scripts/test/peri3dController shear
is an example of using shear components and also simulation on rotatd cell.

doneHook (=uninitalized)
Python command (as string) to run when nSteps is achieved. If empty, the engine will be set
dead.

goal (=Vector6r::Zero())
Goal state; only the upper triangular matrix is considered; each component is either prescribed
stress or strain, depending on stressMask.

maxStrain(=Ie6)
Maximal asolute value of strain allowed in the simulation. If reached, the simulation is con-
sidered as finished

maxStrainRate(=Ie%)
Maximal absolute value of strain rate (both normal and shear components of strain)

mod(=.1)
Predictor modificator, by trail-and-error analysis the value 0.1 was found as the best.

nSteps (=1000)
Number of steps of the simulation.

1.3. Global engines 37

http://en.wikipedia.org/wiki/Polar_decomposition#Matrix_polar_decomposition
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/peri3dController_example1
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/peri3dController_triaxialCompression
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/peri3dController_triaxialCompression
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/peri3dController_shear

Yade Reference Documentation, Release 1st edition

poissonEstimation(=.25)
Estimation of macroscopic Poisson’s ratio, used used for the first simulation step

progress (=0.)

Actual progress of the simulation with Controller.

strain(=Vector6r::Zero())
Current strain (deformation) vector (ex,€y,€2,Yyz,Yzx:Yxy) (auto-updated).

strainRate (=Vector6r::Zero())
Current strain rate vector.

stress(=Vector6r::Zero())
Current stress vector (0x,0y,02,Tyz,Tzx,Txy) [yupdate|.

stressIdeal (=Vector6r::Zero())
Ideal stress vector at current time step.

stressMask (=0, all strains)
mask determining whether components of goal are strain (0) or stress (1). The order is
00,11,22,12,02,01 from the least significant bit. (e.g. 0b000011 is stress 00 and stress 11).

stressRate (=Vector6r::Zero())
Current stress rate vector (that is prescribed, the actual one slightly differ).

xxPath
“Time function” (piecewise linear) for xx direction. Sequence of couples of numbers. First
number is time, second number desired value of respective quantity (stress or strain). The
last couple is considered as final state (equal to (nSteps, goal)), other values are relative to
this state.

Example: nSteps=1000, goal[0]=300, xxPath=((2,3),(4,1),(5,2))

at step 400 (=5%1000/2) the value is 450 (=3*300/2),

at step 800 (=4*1000/5) the value is 150 (=1*300/2),

at step 1000 (=5*1000/5=nSteps) the value is 300 (=2*300/2=goal[0]).
See example scripts/test/peri3dController examplel for illusration.

xyPath (=vector< Vector2r>(1, Vector2r::Ones()))
Time function for xy direction, see xxPath

youngEstimation(=1e20)
Estimation of macroscopic Young’s modulus, used for the first simulation step

yyPath (=vector<Vector2r>(1, Vector2r::Ones()))
Time function for yy direction, see xxPath

yzPath (=vector< Vector2r>(1, Vector2r::Ones()))
Time function for yz direction, see xxPath

zxPath (=vector<Vector2r>(1, Vector2r::Ones()))
Time function for zx direction, see xxPath

zzPath (=vector<Vector2r>(1, Vector2r::Ones()))
Time function for zz direction, see xxPath

class yade.wrapper.PerilsoCompressor (inherits BoundaryController — GlobalEngine — FEn-

gine — Serializable)
Compress/decompress cloud of spheres by controlling periodic cell size until it reaches prescribed
average stress, then moving to next stress value in given stress series.

charLen(=-1.)
Characteristic length, should be something like mean particle diameter (default -1=invalid
value))

currUnbalanced
Current value of unbalanced force

38

Chapter 1. Class reference (yade.wrapper module)

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/peri3dController_example1

Yade Reference Documentation, Release 1st edition

doneHook (=7%)
Python command to be run when reaching the last specified stress

globalUpdateInt (=20)
how often to recompute average stress, stiffness and unbalanced force

keepProportions (=true)
Exactly keep proportions of the cell (stress is controlled based on average, not its components

maxSpan(=-1.)
Maximum body span in terms of bbox, to prevent periodic cell getting too small. (auto-
computed)

maxUnbalanced(=1e-4)

if actual unbalanced force is smaller than this number, the packing is considered stable,
sigma

Current stress value

state(=0)
Where are we at in the stress series

stresses (=uninitalized)
Stresses that should be reached, one after another

class yade.wrapper.PeriTriaxController (inherits BoundaryController — GlobalEngine — En-

gine — Serializable)
Engine for independently controlling stress or strain in periodic simulations.

strainStress contains absolute values for the controlled quantity, and stressMask determines
meaning of those values (0 for strain, 1 for stress): e.g. (1<<0 | 1<<2) = 1 | 4 = 5 means
that strainStress[0] and strainStress[2] are stress values, and strainStress[1] is strain.

See scripts/test/periodic-triax.py for a simple example.

absStressTol(=1e3)
Absolute stress tolerance

currUnbalanced(=NaN)
current unbalanced force (updated every globUpdate) (auto-updated)

doneHook (=uninitalized)
python command to be run when the desired state is reached

dynCell (=false)
Imposed stress can be controlled using the packing stiffness or by applying the laws of dynamic
(dynCell=true). Don’t forget to assign a mass to the cell.

externalWork(=0)
Work input from boundary controller.

globUpdate (=5)
How often to recompute average stress, stiffness and unbalaced force.
goal

Desired stress or strain values (depending on stressMask), strains defined as
strain(i)=log(Fii).

Warning: Strains are relative to the O.cell.refSize (reference cell size), not the current
one (e.g. at the moment when the new strain value is set).

growDamping(=.25)
Damping of cell resizing (O=perfect control, 1=no control at all); see also wallDamping in
TriaxialStressController.

mass (=NalN)
mass of the cell (user set); if not set and dynCell is used, it will be computed as sum of masses
of all particles.

1.3.

Global engines 39

Yade Reference Documentation, Release 1st edition

maxBodySpan (= Vector3r::Zero())
maximum body dimension (auto-computed)

maxStrainRate (= Vector3r(1, 1, 1))
Maximum strain rate of the periodic cell.

maxUnbalanced(=1e-4)
maximum unbalanced force.

prevGrow (= Vector3r::Zero())
previous cell grow

relStressTol (=3¢-5)
Relative stress tolerance

reversedForces (=false)
For some constitutive laws (practicaly all laws based on ScGeom), normalForce and shearForce
on interactions are in the reverse sense and this flag must be true (mandatory). see bugreport

stiff (=Vector3r::Zero())
average stiffness (only every globUpdate steps recomputed from interactions) (auto-updated)

strain(=Vector3r::Zero())
cell strain (auto-updated)

strainRate (=Vector3r::Zero())
cell strain rate (auto-updated)

stress (=Vector3r::Zero())
diagonal terms of the stress tensor

stressMask (=0, all strains)
mask determining strain/stress (0/1) meaning for goal components

stressTensor (=Matriz3r::Zero())
average stresses, updated at every step (only every globUpdate steps recomputed from inter-
actions if !dynCell)

class yade.wrapper.SampleCapillaryPressureEngine (inherits TriazialStressController ——

BoundaryController — GlobalEngine —

Engine — Serializable)
It produces the isotropic compaction of an assembly and allows to controlled the capillary pressure

inside (uses Law2_ScGeom_ CapillaryPhys Capillarity).

Pressure(=0)
Value of the capillary pressure Uc=Ugas-Uliquid (see Law2_ScGeom__ CapillaryPhys_ Capil-
larity). [Pa]

PressureVariation(=0)
Variation of the capillary pressure (each iteration). [Pa]

SigmaPrecision(=0.001)
tolerance in terms of mean stress to consider the packing as stable

StabilityCriterion(=0.01)
tolerance in terms of :yref:’TriaxialCompressionEngine::UnbalancedForce’ to consider the
packing as stable

UnbalancedForce(=1)
mean resultant forces divided by mean contact force

binaryFusion(=1)
If yes, capillary force are set to 0 when, at least, 1 overlap is detected for a meniscus. If no,
capillary force is divided by the number of overlaps.

fusionDetection(=1)
Is the detection of menisci overlapping activated?

pressureVariationActivated(=1)
Is the capillary pressure varying?

40

Chapter 1. Class reference (yade.wrapper module)

https://bugs.launchpad.net/yade/+bug/493102

Yade Reference Documentation, Release 1st edition

class yade.wrapper.ThreeDTriaxialEngine (inherits TriazialStressController — BoundaryCon-

troller — GlobalEngine — Engine — Serializable)
The engine perform a triaxial compression with a control in direction ‘i’ in stress (if stressControl _i)
else in strain.

For a stress control the imposed stress is specified by ‘sigma_ i’ with a ‘max_veli’ depending on
‘strainRatei’. To obtain the same strain rate in stress control than in strain control you need to
set ‘wallDamping = 0.8’. For a strain control the imposed strain is specified by ‘strainRatei’. With
this engine you can also perform internal compaction by growing the size of particles by using
TriaxialStressController: :controlInternalStress. For that, just switch on ‘internalCom-
paction=1" and fix sigma_ iso=value of mean pressure that you want at the end of the internal
compaction.

Key (— » ({)
A string appended at the end of all files, use it to name simulations.

UnbalancedForce(=1)
mean resultant forces divided by mean contact force

currentStrainRatel (=0)
current strain rate in direction 1 - converging to :yref:"ThreeDTriaxialEngine::strainRatel’
(/)

currentStrainRate2(=0)
current strain rate in direction 2 - converging to :yref:’ThreeDTriaxialEngine::strainRate2’
(-/9)

currentStrainRate3(=0)
current strain rate in direction 3 - converging to :yref:’ThreeDTriaxialEngine::strainRate3’
(-/s)

frictionAngleDegree(=-1)
Value of friction used in the simulation if (updateFrictionAngle)

setContactProperties((float)arg2) — None
Assign a new friction angle (degrees) to dynamic bodies and relative interactions

strainRatel (=0)
target strain rate in direction 1 (./s)

strainRate2(=0)
target strain rate in direction 2 (./s)

strainRate3(=0)
target strain rate in direction 3 (./s)

stressControl_1(=true)
Switch to choose a stress or a strain control in directions 1

stressControl_2(=true)
Switch to choose a stress or a strain control in directions 2

stressControl_3(=true)
Switch to choose a stress or a strain control in directions 3

updateFrictionAngle (=false)
Switch to activate the wupdate of the intergranular frictionto the value
:yref:’ ThreeDTriaxialEngine::friction AngleDegree

class yade.wrapper.TriaxialCompressionEngine (inherits TriazialStressController — Bound-
aryController — GlobalEngine — Engine —
Serializable)
The engine is a state machine with the following states; transitions my be automatic, see below.
1.STATE ISO_COMPACTION: isotropic compaction (compression) until the prescribed mean
pressue sigmalsoCompaction is reached and the packing is stable. The compaction happens
either by straining the walls (linternalCompaction) or by growing size of grains (internalCom-
paction).

1.3. Global engines 41

Yade Reference Documentation, Release 1st edition

2.STATE_ISO_UNLOADING: isotropic unloading from the previously reached state, until the
mean pressure sigmaLateralConfinement is reached (and stabilizes).

Note: this state will be skipped if sigmalLateralConfinement == sigmalsoCom-
paction.

3.STATE_TRIAX_ LOADING: confined uniaxial compression: constant sigmal.ateralConfine-
ment is kept at lateral walls (left, right, front, back), while top and bottom walls load the
packing in their axis (by straining), until the value of epsilonMax (deformation along the
loading axis) is reached. At this point, the simulation is stopped.

4. STATE_FIXED_POROSITY__COMPACTION: isotropic compaction (compression) until a
chosen porosity value (parameter:fixedPorosity). The six walls move with a chosen translation
speed (parameter StrainRate).

5.STATE_TRIAX_LIMBO: currently unused, since simulation is hard-stopped in the previous
state.

Transition from COMPACTION to UNLOADING is done automatically if autoUnload==true;

Transition from (UNLOADING to LOADING) or from (COMPACTION to LOADING:
if UNLOADING is skipped) is done automatically if autoCompressionActivation=true;
Both autoUnload and autoCompressionActivation are true by default.

Note: Most of the algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].

Key (— ”» {4)
A string appended at the end of all files, use it to name simulations.

StabilityCriterion(=0.001)
tolerance in terms of Triaxial CompressionEngine::UnbalancedForce to consider the packing is
stable

UnbalancedForce(=1)
mean resultant forces divided by mean contact force

autoCompressionActivation(=true)
Auto-switch from isotropic compaction (or unloading state if sigmaLateralConfine-
ment<sigmalsoCompaction) to deviatoric loading

autoStopSimulation(=true)
Stop the simulation when the sample reach STATE_LIMBO, or keep running

autoUnload (=true)
Auto-switch from isotropic compaction to unloading

currentState(=1)
There are 5 possible states in which TriaxialCompressionEngine can be. See above wrap-
per.Triaxial CompressionEngine

currentStrainRate(=0)
current strain rate - converging to TriaxialCompressionEngine::strainRate (./s)

epsilonMax (=0.5)

Value of axial deformation for which the loading must stop

fixedPoroCompaction(=false)
A special type of compaction with imposed final porosity TriaxialCompressio-
nEngine::fixedPorosity (WARNING : can give unrealistic results!)

fixedPorosity(=0)
Value of porosity chosen by the user

42 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

frictionAngleDegree(=-1)
Value of friction assigned just before the deviatoric loading

maxStress (=0)
Max value of stress during the simulation (for post-processing)

noFiles (=false)
If true, no files will be generated (*.xml, *.spheres,...)

previousSigmaIso(=1)
Previous value of inherited sigma__iso (used to detect manual changes of the confining pressure)

previousState(=1)
Previous state (used to detect manual changes of the state in .xml)

setContactProperties((float)arg2) — None
Assign a new friction angle (degrees) to dynamic bodies and relative interactions

sigmaIlsoCompaction(=1)
Prescribed isotropic pressure during the compaction phase

sigmalateralConfinement (=1)
Prescribed confining pressure in the deviatoric loading; might be different from TriaxialCom-
pressionEngine::sigmalsoCompaction

strainRate(=0)
target strain rate (./s)

testEquilibriumInterval (=20)
interval of checks for transition between phases, higher than 1 saves computation time.

translationAxis (:Triaxz’alStressC’ontmller::normal[, wall_bottom_z’d])
compression axis

uniaxialEpsilonCurr(=1)
Current value of axial deformation during confined loading (is reference to strain[1])

class yade.wrapper.TriaxialStressController (inherits BoundaryController — GlobalEngine

— Engine — Serializable)
An engine maintaining constant stresses on some boundaries of a parallepipedic packing. See also

Triaxial CompressionEngine

Note: The algorithms used have been developed initialy for simulations reported in
[Chareyre2002a] and [Chareyre2005]. They have been ported to Yade in a second step and used in
e.g. [Kozicki2008],[Scholtes2009b]_,[Jerier2010b].

boxVolume
Total packing volume.

computeStressStrainInterval(=10)
depth(=0)
size of the box (2-axis) (auto-updated)

depth0(=0)
Reference size for strain definition. See TriaxialStressController::depth

externalWork(=0)
Energy provided by boundaries.|yupdate|

finalMaxMultiplier (=1.00001)
max multiplier of diameters during internal compaction (secondary precise adjustment - Tri-
axialStressController::maxMultiplier is used in the initial stage)

height (=0)
size of the box (1-axis) (auto-updated)

height0(=0)
Reference size for strain definition. See TriaxialStressController::height

1.3. Global engines 43

Yade Reference Documentation, Release 1st edition

internalCompaction(=true)
Switch between ‘external’” (walls) and ‘internal’ (growth of particles) compaction.

isAxisymetric(=true)
if true, sigma_iso is assigned to sigmal, 2 and 3 (applies at each iteration and overrides
user-set values of s1,2,3)

maxMultiplier(=1.001)
max multiplier of diameters during internal compaction (initial fast increase - TriaxialStress-
Controller::finalMaxMultiplier is used in a second stage)

max_vel(=0.001)
Maximum allowed walls velocity [m/s]. This value superseeds the one assigned by the stress
controller if the later is higher. max_ vel can be set to infinity in many cases, but sometimes
helps stabilizing packings. Based on this value, different maxima are computed for each axis
based on the dimensions of the sample, so that if each boundary moves at its maximum
velocity, the strain rate will be isotropic (see e.g. TriaxialStressController::max_ vell).

max_vell
see TriaxialStressController::max_ vel (auto-computed)

max_vel2
see TriaxialStressController::max_ vel (auto-computed)

max_vel3
see TriaxialStressController::max_ vel (auto-computed)

meanStress (=0)
Mean stress in the packing. (auto-updated)

porosity
Porosity of the packing.

previousMultiplier(=1)
(auto-updated)

previousStress(=0)
(auto-updated)

radiusControlInterval(=10)
sigmal (=0)

prescribed stress on axis 1 (see TriaxialStressController::isAxisymetric)
sigma2(=0)

prescribed stress on axis 2 (see TriaxialStressController::isAxisymetric)
sigma3(=0)

prescribed stress on axis 3 (see TriaxialStressController::isAxisymetric)
sigma_iso(=0)

prescribed confining stress (see TriaxialStressController::isAxisymetric)
spheresVolume

Total volume pf spheres.

stiffnessUpdateInterval (=10)
target strain rate (./s)

strain
Current strain (logarithmic).

stress((int)id) — Vector3
Return the mean stress vector acting on boundary ‘id’, with ‘id’ between 0 and 5.

thickness(=-1)
thickness of boxes (needed by some functions)

volumetricStrain(=0)
Volumetric strain (see TriaxialStressController::strain).|yupdate|

44 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

wallDamping(=0.25)
wallDamping coefficient - wallDamping=0 implies a (theoretical) perfect control, wallDamp-
ing=1 means no movement

wall_back_activated(=true)

if true, the engine is keeping stress constant on this boundary.
wall_back_id(=0)

id of boundary ; coordinate 2-

wall_bottom_activated(=true)
if true, the engine is keeping stress constant on this boundary.

wall bottom_id(=0)
id of boundary ; coordinate 1-

wall_front_activated(=true)
if true, the engine is keeping stress constant on this boundary.

wall_front_id(=0)
id of boundary ; coordinate 2+

wall_left_activated(=true)

if true, the engine is keeping stress constant on this boundary.
wall_left_id(=0)

id of boundary ; coordinate 0-
wall_right_activated(=true)

if true, the engine is keeping stress constant on this boundary.
wall_right_id(=0)

id of boundary ; coordinate 0+
wall_top_activated(=true)

if true, the engine is keeping stress constant on this boundary.
wall_top_id(=0)

id of boundary ; coordinate 14
width(=0)

size of the box (0-axis) (auto-updated)

width0(=0)
Reference size for strain definition. See TriaxialStressController::width

class yade.wrapper.UniaxialStrainer (inherits BoundaryController — GlobalEngine — Engine

— Serializable)
Axial displacing two groups of bodies in the opposite direction with given strain rate.
absSpeed(=NaN)
alternatively, absolute speed of boundary motion can be specified; this is effective only at the
beginning and if strainRate is not set; changing absSpeed directly during simulation wil have
no effect. [ms 1]

active (=true)
Whether this engine is activated

asymmetry (=0, symmetric)
If 0, straining is symmetric for neglds and poslds; for 1 (or -1), only poslds are strained and
neglds don’t move (or vice versa)

avgStress (=0)
Current average stress (auto-updated) [Pal

axis(=2)
The axis which is strained (0,1,2 for x,y,z)
blockDisplacements (=false)

Whether displacement of boundary bodies perpendicular to the strained axis are blocked of
are free

1.3.

Global engines 45

Yade Reference Documentation, Release 1st edition

blockRotations (=false)
Whether rotations of boundary bodies are blocked.

crossSectionArea(=NaN)
crossSection perpendicular to he strained axis; must be given explicitly [m?|

currentStrainRate(=NalN)
Current strain rate (update automatically). (auto-updated)

idleIterations(=0)
Number of iterations that will pass without straining activity after stopStrain has been reached

initAccelTime (=-200)
Time for strain reaching the requested value (linear interpolation). If negative, the time is
dt*(-initAccelTime), where dt is the timestep at the first iteration. [s]

limitStrain(=0, disabled)
Invert the sense of straining (sharply, without transition) one this value of strain is reached.
Not effective if 0.

neglds (=uninitalized)
Bodies on which strain will be applied (on the negative end along the axis)

notYetReversed (=true)
Flag whether the sense of straining has already been reversed (only used internally).
originalLength(=NaN)

Distance of reference bodies in the direction of axis before straining started (computed auto-
matically) [m]

posIds (=uninitalized)
Bodies on which strain will be applied (on the positive end along the axis)

setSpeeds (=false)
should we set speeds at the beginning directly, instead of increasing strain rate progressively?
stopStrain(=NaN)
Strain at which we will pause simulation; inactive (nan) by default; must be reached from
below (in absolute value)

strain(=0)
Current strain value, elongation/originalLength (auto-updated) [-]

strainRate(=NalN)
Rate of strain, starting at 0, linearly raising to strainRate. [-]

stressUpdateInterval (=10)
How often to recompute stress on supports.

1.3.3 Collider

SpatialQuickSortCollider

PersistentTriangulationCollider

Collider

FlatGridCollider

InsertionSortCollider

46

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

class yade.wrapper.Collider (inherits GlobalEngine — Engine — Serializable)
Abstract class for finding spatial collisions between bodies.

Special constructor

Derived colliders (unless they override pyHandleCustomCtorArgs) can be given list of BoundFunc-
tors which is used to initialize the internal boundDispatcher instance.

boundDispatcher (=new BoundDispatcher)
BoundDispatcher object that is used for creating bounds on collider’s request as necessary.

class yade.wrapper.FlatGridCollider (inherits Collider — GlobalEngine — Engine — Serial-

izable)
Non-optimized grid collider, storing grid as dense flat array. Each body is assigned to (possibly

multiple) cells, which are arranged in regular grid between aabbMin and aabbMax, with cell size
step (same in all directions). Bodies outsize (aabbMin, aabbMazx) are handled gracefully, assigned
to closest cells (this will create spurious potential interactions). verletDist determines how much is
each body enlarged to avoid collision detection at every step.

Note: This collider keeps all cells in linear memory array, therefore will be memory-inefficient for
sparse simulations.

Warning: Body::bound objects are not used, BoundFunctors are not used either: assigning
cells to bodies is hard-coded internally. Currently handles Shapes are: Sphere.

Note: Periodic boundary is not handled (yet).

aabbMax (=Vector8r::Zero())
Upper corner of grid (approximate, might be rouded up to minStep.

aabbMin (= Vector3r::Zero())
Lower corner of grid.

step (=0)
Step in the grid (cell size)

verletDist (=0)
Length by which enlarge space occupied by each particle; avoids running collision detection
at every step.

class yade.wrapper.InsertionSortCollider (inherits Collider — GlobalEngine — FEngine —
Serializable)
Collider with O(n log(n)) complexity, using Aabb for bounds.
At the initial step, Bodies’ bounds (along sortAxis) are first std::sort’ed along one axis (sortAxis),
then collided. The initial sort has O(n?) complexity, see Colliders’ performance for some informa-
tion (There are scripts in examples/collider-perf for measurements).

Insertion sort is used for sorting the bound list that is already pre-sorted from last iteration, where
each inversion calls checkOverlap which then handles either overlap (by creating interaction if
necessary) or its absence (by deleting interaction if it is only potential).

Bodies without bounding volume (such as clumps) are handled gracefully and never collide. Deleted
bodies are handled gracefully as well.

This collider handles periodic boundary conditions. There are some limitations, notably:

1.No body can have Aabb larger than cell’s half size in that respective dimension. You get
exception it it does and gets in interaction.

2.No body can travel more than cell’s distance in one step; this would mean that the simulation
is numerically exploding, and it is only detected in some cases.

1.3. Global engines 47

https://yade-dem.org/index.php/Colliders_performace

Yade Reference Documentation, Release 1st edition

Stride can be used to avoid running collider at every step by enlarging the particle’s bounds,
tracking their velocities and only re-run if they might have gone out of that bounds (see Verlet list
for brief description and background) . This requires cooperation from NewtonIntegrator as well
as BoundDispatcher, which will be found among engines automatically (exception is thrown if they
are not found).

If you wish to use strides, set verletDist (length by which bounds will be enlarged in all direc-
tions) to some value, e.g. 0.05 X typical particle radius. This parameter expresses the tradeoff
between many potential interactions (running collider rarely, but with longer exact interaction res-
olution phase) and few potential interactions (running collider more frequently, but with less exact
resolutions of interactions); it depends mainly on packing density and particle radius distribution.

If you additionally set nBins to >=1, not all particles will have their bound enlarged by
verletDist; instead, they will be put to bins (in the statistical sense) based on magnitude of
their velocity; verletDist will only be used for particles in the fastest bin, whereas only propor-
tionally smaller length will be used for slower particles; The coefficient between bin’s velocities is
given by binCoeff.

binCoeff (=2)
Coefficient of bins for velocities, i.e. if binCoeff==5, successive bins have 5 x smaller velocity
peak than the previous one. (Passed to VelocityBins)

binOverlap(=0.8)
Relative bins hysteresis, to avoid moving body back and forth if its velocity is around the
border value. (Passed to VelocityBins)

dumpBounds () — tuple
Return representation of the internal sort data. The format is ([...],[...]1,[...]) for 3
axes, where each ... is a list of entries (bounds). The entry is a tuple with the fllowing items:

o coordinate (float)
e body id (int), but negated for negative bounds
o period numer (int), if the collider is in the periodic regime.

fastestBodyMaxDist (=-1)
Maximum displacement of the fastest body since last run; if >= verletDist, we could get out of
bboxes and will trigger full run. DEPRECATED, was only used without bins. (auto-updated)

histInterval(=100)
How often to show velocity bins graphically, if debug logging is enabled for VelocityBins.

maxRefRelStep(=.%)
(Passed to VelocityBins)

nBins(=5)
Number of velocity bins for striding. If <=0, bin-less strigin is used (this is however DEP-
RECATED).

numReinit (=0)
Cummulative number of bound array re-initialization.

periodic
Whether the collider is in periodic mode (read-only; for debugging) (auto-updated)

sortAxis(=0)
Axis for the initial contact detection.

sortThenCollide (=false)
Separate sorting and colliding phase; it is MUCH slower, but all interactions are processed
at every step; this effectively makes the collider non-persistent, not remembering last state.
(The default behavior relies on the fact that inversions during insertion sort are overlaps of
bounding boxes that just started/ceased to exist, and only processes those; this makes the
collider much more efficient.)

strideActive
Whether striding is active (read-only; for debugging). (auto-updated)

48

Chapter 1. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Verlet_list

Yade Reference Documentation, Release 1st edition

sweepFactor(=1.05)
Overestimation factor for the sweep velocity; must be >=1.0. Has no influence on verletDist,
only on the computed stride. [DEPRECATED, is used only when bins are not used].

verletDist (=-.05, Automatically initialized)
Length by which to enlarge particle bounds, to avoid running collider at every step. Stride
disabled if zero. Negative value will trigger automatic computation, so that the real value will
be |verletDist| x minimum spherical particle radius; if there are no spherical particles, it
will be disabled.

class yade.wrapper.PersistentTriangulationCollider (inherits Collider — GlobalEngine —

Engine — Serializable)
Collision detection engine based on regular triangulation. Handles spheres and flat boundaries

(considered as infinite-sized bounding spheres).

haveDistantTransient (=false)
Keep distant interactions? If True, don’t delete interactions once bodies don’t overlap any-
more; constitutive laws will be responsible for requesting deletion. If False, delete as soon as
there is no object penetration.

class yade.wrapper.SpatialQuickSortCollider (inherits Collider — GlobalEngine — Engine —

Serializable)
Collider using quicksort along axes at each step, using Aabb bounds.

Its performance is lower than that of InsertionSortCollider (see Colliders’ performance), but the
algorithm is simple enought to make it good for checking other collider’s correctness.

1.3.4 FieldApplier

CentralGravityEngine

FieldApplier AxialGravityEngine

GravityEngine |= Hdaps GravityEngine

class yade.wrapper.FieldApplier (inherits GlobalEngine — Engine — Serializable)
Base for engines applying force files on particles. Not to be used directly.

class yade.wrapper.AxialGravityEngine (inherits FieldApplier — GlobalEngine — Engine —

Serializable)
Apply acceleration (independent of distance) directed towards an axis.

acceleration(=0)
Acceleration magnitude [kgms ?]

axisDirection(=Vector3r::UnitX())
direction of the gravity axis (will be normalized automatically)

axisPoint (=Vectordr::Zero())
Point through which the axis is passing.

class yade.wrapper.CentralGravityEngine (inherits FieldApplier — GlobalEngine — Engine —

Serializable)
Engine applying acceleration to all bodies, towards a central body.

accel(=0)
Acceleration magnitude [kgms ?]

centralBody(=Body::ID_NONE)
The body towards which all other bodies are attracted.

1.3. Global engines 49

https://yade-dem.org/index.php/Colliders_performace

Yade Reference Documentation, Release 1st edition

reciprocal (=false)
If true, acceleration will be applied on the central body as well.

class yade.wrapper.GravityEngine (inherits FieldApplier — GlobalEngine — Engine — Serial-

izable)
Engine applying constant acceleration to all bodies.

gravity (=Vector3r::Zero())
Acceleration [kgms ?]

class yade.wrapper.HdapsGravityEngine (inherits GravityEngine — FieldApplier — Glob-

alEngine — Engine — Serializable)
Read accelerometer in Thinkpad laptops (HDAPS and accordingly set gravity within the simula-
tion. This code draws from hdaps-gl . See scripts/test/hdaps.py for an example.

accel (=Vector2i::Zero())
reading from the sysfs file

calibrate (= Vector2i::Zero())
Zero position; if NaN, will be read from the hdapsDir / calibrate.

calibrated(=false)
Whether calibrate was already updated. Do not set to True by hand unless you also give a
meaningful value for calibrate.

hdapsDir (="/sys/devices/platform/hdaps”)
Hdaps directory; contains position (with accelerometer readings) and calibration (zero
acceleration).

msecUpdate (=50)
How often to update the reading.

updateThreshold(=4)
Minimum difference of reading from the file before updating gravity, to avoid jitter.

zeroGravity (=Vector3r(0, 0, -1))
Gravity if the accelerometer is in flat (zero) position.

1.4 Partial engines

TranslationEngine PressTestEngine
RotationEngine HarmonicRotationEngine
HarmonicMotionEngine HelixEngine InterpolatingHelixEngine

InterpolatingDirectedForceEngine ‘

‘ CombinedKinematicEngine ‘

PartialEngine

class yade.wrapper.PartialEngine (inherits Engine — Serializable)
Engine affecting only particular bodies in the simulation, defined by ids.

ids (=uninitalized)
Ids of bodies affected by this PartialEngine.

class yade.wrapper.CombinedKinematicEngine (inherits PartialEngine — Engine — Serializ-

able)
Engine for applying combined displacements on pre-defined bodies. Constructed using + operator

50 Chapter 1. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Active_hard_drive_protection
https://sourceforge.net/project/showfiles.php?group_id=138242
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/hdaps.py

Yade Reference Documentation, Release 1st edition

on regular KinematicEngines. The ids operated on are those of the first engine in the combination
(assigned automatically).

comb (=uninitalized)
Kinematic engines that will be combined by this one, run in the order given.

class yade.wrapper.FlowEngine (inherits PartialEngine — Engine — Serializable)
An engine to solve flow problem in saturated granular media

BACK_Boundary_MaxMin(=1)
If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

BOTTOM_Boundary_MaxMin(=1)
If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

CachedForces (=true)
Des/Activate the cached forces calculation

Debug(=false)
Activate debug messages

EpsVolPercent_RTRG(=0.01)
Percentuage of cumulate eps_ vol at which retriangulation of pore space is performed

FRONT_Boundary_MaxMin(=1)
If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

Flow_imposed_BACK_Boundary (=true)
if false involve pressure imposed condition

Flow_imposed_BOTTOM_Boundary(=true)
if false involve pressure imposed condition

Flow_imposed_FRONT_Boundary (=true)
if false involve pressure imposed condition

Flow_imposed_LEFT_Boundary (=true)
if false involve pressure imposed condition

Flow_imposed_RIGHT_Boundary (=true)
if false involve pressure imposed condition

Flow_imposed_TOP_Boundary (=true)

if false involve pressure imposed condition
K(=0)

Permeability of the sample
LEFT_Boundary_MaxMin(=1)

If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

MaxPressure (=0)
Maximal value of water pressure within the sample

P_zero(=0)
Initial internal pressure for oedometer test

PermuteInterval (=100000)
Pore space re-triangulation period

Pressure_BACK_Boundary(=0)
Pressure imposed on back boundary

Pressure_BOTTOM_Boundary (=0)
Pressure imposed on bottom boundary

1.4. Partial engines 51

Yade Reference Documentation, Release 1st edition

Pressure_FRONT_Boundary(=0)
Pressure imposed on front boundary

Pressure_LEFT_Boundary(=0)
Pressure imposed on left boundary

Pressure_RIGHT_Boundary(=0)
Pressure imposed on right boundary

Pressure_TOP_Boundary(=0)
Pressure imposed on top boundary

RIGHT _Boundary_MaxMin(=1)
If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position
Relax(=1.9)
Gauss-Seidel relaxation
Sinus_Amplitude(=0)
Pressure value (amplitude) when sinusoidal pressure is applied
Sinus_Average(=0)
Pressure value (average) when sinusoidal pressure is applied
TOP_Boundary_MaxMin(=1)
If true bounding sphere is added as function fo max/min sphere coord, if false as function of
yade wall position

Tolerance(=1e-06)
Gauss-Seidel Tolerance

Update_Triangulation(=0)
If true the medium is retriangulated

WaveAction(=false)
Allow sinusoidal pressure condition to simulate ocean waves

blocked_grains(=false)
Grains will/won’t be moved by forces

bottom_seabed_pressure(=0)
Fluid pressure measured at the bottom of the seabed on the symmetry axe

clearImposedPressure() — None
Clear the list of points with pressure imposed.

compute_K(=false)
Activates permeability measure within a granular sample

consolidation(=false)
Enable/Disable storing consolidation files

currentStrain(=0)
Current value of axial strain

currentStress(=0)
Current value of axial stress
eps_vol_max(=0)
Maximal absolute volumetric strain computed at each iteration

first (=true)
Controls the initialization/update phases

getFlux ((int)cond) — float
Get influx in cell associated to an imposed P (indexed using ‘cond’).

id_sphere (=0)
Average velocity will be computed for all cells incident to that sphere

52 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

imposePressure ((Vector3)pos, (float)p) — None
Impose pressure in cell of location ‘pos’.

intervals (=30)
Number of layers for pressure measurements

isActivated (=true)
Activates Flow Engine

liquefaction(=false)
Compute bottom_seabed_ pressure if true, see below

loadFactor(=1.1)
Load multiplicator for oedometer test

meanK_correction(=true)
Local permeabilities’ correction through meanK threshold

meanK_opt (=false)

Local permeabilities’ correction through an optimized threshold
permeability_factor(=1.0)

a permability multiplicator
porosity(=0)

Porosity computed at each retriangulation

save_mgpost (=false)
Enable/disable mgpost file creation

save_mplot (=false)
Enable/disable mplot files creation

save_vtk(=false)
Enable/disable vtk files creation for visualization

slice_pressures (=false)
Enable/Disable slice pressure measurement

slip_boundary (=true)
Controls friction condition on lateral walls

useSolver (=0)
Solver to use

velocity_profile(=false)
Enable/Disable slice velocity measurement

class yade.wrapper.ForceEngine (inherits PartialEngine — Engine — Serializable)
Apply contact force on some particles at each step.

force(=Vectorsr::Zero())
Force to apply.

class yade.wrapper.HarmonicMotionEngine (inherits KinematicEngine — PartialEngine — En-

gine — Serializable)
This engine implements the harmonic oscillation of bodies. http://en.wikipedia.org/wiki/Simple -

harmonic_ motion#Dynamics_of simple harmonic_motion
A(=Vector8r::Zero())

Amplitude [m]
£ (=Vector8r::Zero())

Frequency [hertz]

£i(=Vector3r(Mathr::P1/2.0, Mathr::PI/2.0, Mathr::PI1/2.0))
Initial phase [radians]. By default, the body oscillates around initial position.

class yade.wrapper.HarmonicRotationEngine (inherits RotationEngine — KinematicEngine —

PartialEngine — Engine — Serializable)
This engine implements the harmonic-rotation oscillation of bodies.

1.4. Partial engines 53

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Reference Documentation, Release 1st edition

http://en.wikipedia.org/wiki/Simple harmonic_ motion#Dynamics_of simple harmonic_-
motion ; please, set dynamic=False for bodies, droven by this engine, otherwise amplitude will be
2x more, than awaited.
A(=0)

Amplitude [rad]
£f(=0)

Frequency [hertz]
£i(=Mathr::P1/2.0)

Initial phase [radians]. By default, the body oscillates around initial position.

class yade.wrapper.HelixEngine (inherits RotationEngine — KinematicEngine — PartialEngine

— FEngine — Serializable)
Engine applying both rotation and translation, along the same axis, whence the name HelixEngine

angleTurned (=0)
How much have we turned so far. (auto-updated) [rad]

linearVelocity(=0)
Linear velocity [m/s]

class yade.wrapper.InterpolatingDirectedForceEngine (inherits ForceEngine — Par-

tialEngine — FEngine — Serializ-

able)
Engine for applying force of varying magnitude but constant direction on subscribed bodies. times

and magnitudes must have the same length, direction (normalized automatically) gives the orien-
tation.

As usual with interpolating engines: the first magnitude is used before the first time point, last
magnitude is used after the last time point. Wrap specifies whether time wraps around the last
time point to the first time point.

direction(=Vector3r::UnitX())
Contact force direction (normalized automatically)

magnitudes (=uninitalized)
Force magnitudes readings [N]

times (=uninitalized)
Time readings [s]

wrap (=false)
wrap to the beginning of the sequence if beyond the last time point

class yade.wrapper.InterpolatingHelixEngine (inherits HelirEngine — RotationEngine —

KinematicEngine — PartialEngine — FEngine

— Serializable)
Engine applying spiral motion, finding current angular velocity by linearly interpolating in times

and velocities and translation by using slope parameter.
The interpolation assumes the margin value before the first time point and last value after the last

time point. If wrap is specified, time will wrap around the last times value to the first one (note
that no interpolation between last and first values is done).

angularVelocities (=uninitalized)

List of angular velocities; manadatorily of same length as times. [rad/s]
slope(=0)

Axial translation per radian turn (can be negative) [m/rad]

times (=uninitalized)
List of time points at which velocities are given; must be increasing [s]

wrap (=false)
Wrap t if t>times_n, i.e. t_ wrapped=t-N*(times_ n-times_ 0)

54

Chapter 1. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion
http://en.wikipedia.org/wiki/Simple_harmonic_motion#Dynamics_of_simple_harmonic_motion

Yade Reference Documentation, Release 1st edition

class yade.wrapper.KinematicEngine (inherits PartialEngine — Engine — Serializable)

Abstract engine for applying prescribed displacement.

Note: Derived classes should override the apply with given list of ids (not action with Par-
tialEngine.ids), so that they work when combined together; velocity and angular velocity of all
subscribed bodies is reset before the apply method is called, it should therefore only increment
those quantities.

class yade.wrapper.LawTester (inherits PartialEngine — Engine — Serializable)

Prescribe and apply deformations of an interaction in terms of local mutual displacements and
rotations. The loading path is specified either using path (as sequence of 6-vectors containing
generalized displacements Uy, Uy, Uz, @x, @y, @) or disPath (uy, uy, u,) and rotPath (@, @y,
@.). Time function with time values (step numbers) corresponding to points on loading path is
given by pathSteps. Loading values are linearly interpolated between given loading path points,
and starting zero-value (the initial configuration) is assumed for both path and pathSteps. hooks
can specify python code to run when respective point on the path is reached; when the path is
finished, doneHook will be run.

LawTester should be placed between InteractionLoop and NewtonIntegrator in the simulation
loop, since it controls motion via setting linear /angular velocities on particles; those velocities are
integrated by Newtonlntegrator to yield an actual position change, which in turn causes IGeom
to be updated (and contact law applied) when InteractionLoop is executed. Constitutive law
generating forces on particles will not affect prescribed particle motion, since both particles have
all DoFs blocked when first used with LawTester.

LawTester uses, as much as possible, IGeom to provide useful data (such as local coordinate system),
but is able to compute those independently if absent in the respective IGeom:

IGeom #DoFs LawTester support level
3 full
L3Geom "
6 full
L6Geom "
3 emulate local coordinate system
ScGeom
SeCeom6D 6 emulate local coordinate system
3 t ted
Dem3DofGeom 1108 SUpporte

Depending on IGeom, 3 (U, Wy, Uz) or 6 (Uy, Uy, Uz, @x, Py, @) degrees of freedom (DoFs)
are controlled with LawTester, by prescribing linear and angular velocities of both particles in
contact. All DoFs controlled with LawTester are orthogonal (fully decoupled) and are controlled
independently.

When 3 DoFs are controlled, rotWeight controls whether local shear is applied by moving particle
on arc around the other one, or by rotating without changing position; although such rotation
induces mutual rotation on the interaction, it is ignored with IGeom with only 3 DoFs. When 6
DoFs are controlled, only arc-displacement is applied for shear, since otherwise mutual rotation
would occur.

idWeight distributes prescribed motion between both particles (resulting local deformation is the
same if id1 is moved towards id2 or id2 towards id1). This is true only for u,, uy, u,, @«
however ; bending rotations ¢, @, are nevertheless always distributed regardless of idWeight to
both spheres in inverse proportion to their radii, so that there is no shear induced.

LawTester knows current contact deformation from 2 sources: from its own internal data (which
are used for prescribing the displacement at every step), which can be accessed in uTest, and from
IGeom itself (depending on which data it provides), which is stored in uGeom. These two values
should be identical (disregarding numerical percision), and it is a way to test whether IGeom and
related functors compute what they are supposed to compute.

LawTester-operated interactions can be rendered with GlExtra LawTester renderer.

See scripts/test/law-test.py for an example.

1.4.

Partial engines 55

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/law-test.py

Yade Reference Documentation, Release 1st edition

disPath (=uninitalized)
Loading path, where each Vector3 contains desired normal displacement and two components
of the shear displacement (in local coordinate system, which is being tracked automatically.
If shorter than rotPath, the last value is repeated.

displIsRel (=true)
Whether displacement values in disPath are normalized by reference contact length (rl+4r2
for 2 spheres).

doneHook (=uninitalized)
Python command (as string) to run when end of the path is achieved. If empty, the engine
will be set dead.

hooks (=uninitalized)
Python commands to be run when the corresponding point in path is reached, before doing
other things in that particular step. See also doneHook.

idWeight (=1)
Float, usually (0,1), determining on how are displacements distributed between particles
(0 for id1, 1 for id2); intermediate values will apply respective part to each of them. This
parameter is ignored with 6-DoFs [Geom.

pathSteps (=vector<int>(1, 1), (constant step))
Step number for corresponding values in path; if shorter than path, distance between last 2
values is used for the rest.

refLength(=0)
Reference contact length, for rendering only.

renderLength(=0)
Characteristic length for the purposes of rendering, set equal to the smaller radius.

rotPath (=uninitalized)
Rotational components of the loading path, where each item contains torsion and two bending
rotations in local coordinates. If shorter than path, the last value is repeated.

rotWeight (=1)
Float (0,1) determining whether shear displacement is applied as rotation or displacement on
arc (0 is displacement-only, 1 is rotation-only). Not effective when mutual rotation is specified.

step(=1)
Step number in which this engine is active; determines position in path, using pathSteps.

trsf (=uninitalized)
Transformation matrix for the local coordinate system. (auto-updated)

uGeom (= Vector6r::Zero())
Current generalized displacements (3 displacements, 3 rotations), as stored in the interation
itself. They should corredpond to uTest, otherwise a bug is indicated.

uTest (=Vector6r::Zero())
Current generalized displacements (3 displacements, 3 rotations), as they should be according
to this LawTester. Should correspond to uGeom.

uuPrev (=Vector6r::Zero())
Generalized displacement values reached in the previous step, for knowing which increment
to apply in the current step.

class yade.wrapper.PressTestEngine (inherits TranslationEngine — KinematicEngine — Par-

tialEngine — Engine — Serializable)
This class simulates the simple press work When the press cracks the solid brittle material, it

returns back to the initial position and stops the simulation loop.

numberIterationAfterDestruction(=0)
The number of iterations, which will be carry out after destruction [-]

predictedForce(=0)
The minimal force, after what the engine will look for a destruction [N]

56 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

riseUpPressHigher (=1)
After destruction press rises up. This is the relationship between initial press velocity and
velocity for going back [-]

class yade.wrapper.RotationEngine (inherits KinematicEngine — PartialEngine — Engine —

Serializable)
Engine applying rotation (by setting angular velocity) to subscribed bodies. If rotateAroundZero

is set, then each body is also displaced around zeroPoint.

angularVelocity(=0)
Angular velocity. [rad/s]

rotateAroundZero (=false)
If True, bodies will not rotate around their centroids, but rather around zeroPoint.

rotationAxis (=Vector3r::UnitX())
Axis of rotation (direction); will be normalized automatically.

zeroPoint (=Vector3r::Zero())
Point around which bodies will rotate if rotateAroundZero is True

class yade.wrapper.StepDisplacer (inherits PartialEngine — Engine — Serializable)
Apply generalized displacement (displacement or rotation) stepwise on subscribed bodies. Could
be used for purposes of contact law tests (by moving one sphere compared to an other), but in this
case, see rather LawTester

mov (=Vector3r::Zero())
Linear displacement step to be applied per iteration, by addition to State.pos.

rot (=Quaternionr::Identity())
Rotation step to be applied per iteration (via rotation composition with State.ori).

setVelocities (=false)
If false, positions and orientations are directly updated, without changing the speeds of con-
cerned bodies. If true, only velocity and angularVelocity are modified. In this second case
integrator is supposed to be used, so that, thanks to this Engine, the bodies will have the
prescribed jump over one iteration (dt).

class yade.wrapper.TorqueEngine (inherits PartialEngine — Engine — Serializable)
Apply given torque (momentum) value at every subscribed particle, at every step.

moment (= Vector3r::Zero())
Torque value to be applied.

class yade.wrapper.TranslationEngine (inherits KinematicEngine — PartialEngine — Engine
— Serializable)
This engine is the base class for different engines, which require any kind of motion.
translationAxis (=uninitalized)
Direction [Vector3]

velocity (=uninitalized)
Velocity [m/s]

1.4. Partial engines 57

Yade Reference Documentation, Release 1st edition

1.5 Bounding volume creation

1.5.1 BoundFunctor

Bol_ChainedCylinder_Aabb

Bol_Facet Aabb

Bol _Sphere_Aabb

BoundFunctor Bol_Tetra_Aabb

Bol Wall_Aabb

Bol _Box_Aabb

Bol_Cylinder_Aabb

class yade.wrapper.BoundFunctor (inherits Functor — Serializable)
Functor for creating/updating Body::bound.

class yade.wrapper.Bol_Box_Aabb (inherits BoundFunctor — Functor — Serializable)
Create/update an Aabb of a Box.

class yade.wrapper.Bol_ChainedCylinder_Aabb (inherits BoundFunctor — Functor — Serializ-

able)
Functor creating Aabb from ChainedCylinder.

aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with an
IGeomFunctor which will not simply discard such interactions: Ig2 Cylinder Cylinder -
Dem3DofGeom::distFactor / Ig2 Cylinder Cylinder ScGeom::interactionDetectionFactor
should have the same value as aabbEnlargeFactor.

class yade.wrapper.Bol_Cylinder_Aabb(inherits BoundFunctor — Functor — Serializable)
Functor creating Aabb from Cylinder.

aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with an
IGeomFunctor which will not simply discard such interactions: Ig2 Cylinder Cylinder -
Dem3DofGeom::distFactor / Ig2 Cylinder Cylinder ScGeom::interactionDetectionFactor
should have the same value as aabbEnlargeFactor.

class yade.wrapper.Bol_Facet_Aabb (inherits BoundFunctor — Functor — Serializable)
Creates/updates an Aabb of a Facet.

58 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

class yade.wrapper.Bol_Sphere_Aabb (inherits BoundFunctor — Functor — Serializable)
Functor creating Aabb from Sphere.

aabbEnlargeFactor
Relative enlargement of the bounding box; deactivated if negative.

Note: This attribute is used to create distant interaction, but is only meaningful with
an [GeomFunctor which will not simply discard such interactions: Ig2 Sphere Sphere -
Dem3DofGeom::distFactor ~ / Ig2_ Sphere Sphere ScGeom::interactionDetectionFactor
should have the same value as aabbEnlargeFactor.

class yade.wrapper.Bol_Tetra_Aabb (inherits BoundFunctor — Functor — Serializable)
Create/update Aabb of a Tetra

class yade.wrapper.Bol_Wall_Aabb (inherits BoundFunctor — Functor — Serializable)
Creates/updates an Aabb of a Wall

1.5.2 BoundDispatcher

class yade.wrapper.BoundDispatcher (inherits Dispatcher — Engine — Serializable)
Dispatcher calling functors based on received argument type(s).

activated(=true)
Whether the engine is activated (only should be changed by the collider)

dispFunctor ((Shape)arg2) — BoundFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)nameS:T'rue]) — dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

sweepDist (=0)
Distance by which enlarge all bounding boxes, to prevent collider from being run at every
step (only should be changed by the collider).

1.5. Bounding volume creation 59

Yade Reference Documentation, Release 1st edition

1.6 Interaction Geometry creation

1.6.1 IGeomFunctor

Ig2_Sphere_Sphere_Dem3DofGeom ‘

’ Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D ‘

’ Ig2_Sphere_Sphere_L6Geom ‘

’ Ig2_Wall_Sphere_ScGeom ‘

Ig2_Wall_Sphere_L3Geom ‘

’ Ig2_Sphere_Sphere_L3Geom

Ig2_Facet_Sphere_L3Geom ‘

’ Ig2_Sphere_Sphere_ScGeom

/ ’ Ig2_Sphere_Sphere_ScGeom6D ‘

IGeomFunctor %’ Ig2_Facet_Sphere_Dem3DofGeom ‘

'\

’ Ig2_Facet_Sphere_ScGeom ‘

’ Ig2_Sphere_ChainedCylinder_CylScGeom ‘

’ Ilg2_Box_Sphere_ScGeom F—{ 1g2_Box_Sphere_ScGeom6D

Ig2_Tetra_Tetra_TTetraGeom ‘

’ Ig2_Wall_Sphere_Dem3DofGeom ‘

class yade.wrapper.IGeomFunctor (inherits Functor — Serializable)
Functor for creating/updating Interaction::geom objects.

class yade.wrapper.Ig2_Box_Sphere_ScGeom(inherits [GeomFunctor — Functor — Serializable)
Create an interaction geometry ScGeom from Box and Sphere, representing the box with a projected
virtual sphere of same radius.

class yade.wrapper.Ig2_Box_Sphere_ScGeom6D (inherits Ig2_Box_Sphere_ScGeom — IGeom-

Functor — Functor — Serializable)
Create an interaction geometry ScGeom6D from Box and Sphere, representing the box with a

projected virtual sphere of same radius.

class yade.wrapper.Ig2_ChainedCylinder_ChainedCylinder_ScGeom6D (inherits IGeomFunc-
tor — Functor — Se-

rializable)
Create/update a ScGeom instance representing connexion between chained cylinders.

interactionDetectionFactor (=1)
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

class yade.wrapper.Ig2_Facet_Sphere_Dem3DofGeom(inherits IGeomFunctor — Functor — Se-

rializable)
Compute geometry of facet-sphere contact with normal and shear DOFs. As in all other

Dem3DofGeom-related classes, total formulation of both shear and normal deformations is used.
See Dem3DofGeom_ FacetSphere for more information.

class yade.wrapper.Ig2_Facet_Sphere_L3Geom(inherits Ig2_ Sphere Sphere L3Geom — IGe-

omFunctor — Functor — Serializable)
Incrementally compute L3Geom for contact between Facet and Sphere. Uses attributes of Ig2 -

Sphere Sphere L3Geom.

60 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

class yade.wrapper.Ig2_Facet_Sphere_ScGeom(inherits IGeomFunctor — Functor — Serializ-

able)
Create/update a ScGeom instance representing intersection of Facet and Sphere.

shrinkFactor (=0, no shrinking)
The radius of the inscribed circle of the facet is decreased by the value of the sphere’s ra-
dius multipled by shrinkFactor. From the definition of contact point on the surface made
of facets, the given surface is not continuous and becomes in effect surface covered with tri-
angular tiles, with gap between the separate tiles equal to the sphere’s radius multiplied by
2x*shrinkFactor*. If zero, no shrinking is done.

class yade.wrapper.Ig2_Sphere_ChainedCylinder_CylScGeom(inherits IGeomFunctor — —

Functor — Serializable)
Create/update a ScGeom instance representing intersection of two Spheres.

interactionDetectionFactor(=1)
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

class yade.wrapper.Ig2_Sphere_Sphere_Dem3DofGeom(inherits IGeomFunctor — Functor —

Serializable)
Functor handling contact of 2 spheres, producing Dem3DofGeom instance
distFactor(=-1)
Factor of sphere radius such that sphere “touch” if their centers are not further than distFac-
tor*(r14r2); if negative, equilibrium distance is the sum of the sphere’s radii.

class yade.wrapper.Ig2_Sphere_Sphere_L3Geom(inherits IGeomFunctor — Functor — Serializ-

Functor for computing incrementally conﬁgura‘gorf of 2 Spheres stored in L.3Geom; the configuration
is positioned in global space by local origin ¢ (contact point) and rotation matrix T (orthonormal
transformation matrix), and its degrees of freedom are local displacement u (in one normal and
two shear directions); with Ig2 Sphere Sphere L6Geom and L6Geom, there is additionally ¢.
The first row of T, i.e. local x-axis, is the contact normal noted n for brevity. Additionally, quasi-
constant values of uy (and o) are stored as shifted origins of u (and @); therefore, current value
of displacement is always u°® —up.

Suppose two spheres with radii i, positions Xi, velocities vi, angular velocities wj.

When there is not yet contact, it will be created if un = x5 — x| — [fal(r1 +12) < 0, where fq is
distFactor (sometimes also called *‘interaction radius™). If fqg > 0, then upy will be initalized to
un, otherwise to 0. In another words, contact will be created if spheres enlarged by |fq4| touch, and
the “‘equilibrium distance” (where u, —u — Ox is zero) will be set to the current distance if fq is
positive, and to the geometrically-touching distance if negative.

Local axes (rows of T) are initially defined as follows:

—

e local x-axis is 1 =X, =X — X7;

e local y-axis positioned arbitrarily, but in a deterministic manner: aligned with the xz plane
(if ny <mn;) or xy plane (otherwise);
elocal z-axis zy =X X Yy.
If there has already been contact between the two spheres, it is updated to keep track of rigid
motion of the contact (one that does not change mutual configuration of spheres) and mutual
configuration changes. Rigid motion transforms local coordinate system and can be decomposed

in rigid translation (affecting ¢), and rigid rotation (affecting T), which can be split in rotation o,
perpendicular to the normal and rotation o (“‘twist’*) parallel with the normal:

oY =n~ xn°.

Since velocities are known at previous midstep (t — At/2), we consider mid-step normal

e:'nf—Ht"
2

1.6.

Interaction Geometry creation 61

Yade Reference Documentation, Release 1st edition

For the sake of numerical stability, n© is re-normalized after being computed, unless prohibited by
approxMask. If approxMask has the appropriate bit set, the mid-normal is not compute, and we
simply use n°® ~n—.

Rigid rotation parallel with the normal is

o o
ws + w
ote:n@<n9~1—£ 2>At.

Branch vectors by, by (connecting x5, x5 with ¢°® are computed depending on noRatch (see here).

b Tn° with noRatch
1= .
c® —x7 otherwise

b —ron° with noRatch
2= .
c® —x§ otherwise

Relative velocity at ¢® can be computed as

vo = (35 + w, x b)) — (vi + Wy x by)

where v, is v, without mean-field velocity gradient in periodic boundary conditions (see
Cell.homoDeform). In the numerial implementation, the normal part of incident velocity is re-
moved (since it is computed directly) with v, =v¢ — (n® - v2)n®.

Any vector a expressed in global coordinates transforms during one timestep as

a°=a +VvJAt—a xof—a xt¥

where the increments have the meaning of relative shear, rigid rotation normal to n and rigid
rotation parallel with n. Local coordinate system orientation, rotation matrix T, is updated by
rows, i.e.

(o) o [e]
ny my ng .
o __ — — e —
T° = TL.—T]’.XOT —T1’,><ot

= = o - S
T, —Tz,. X 0f —Ty, X O

This matrix is re-normalized (unless prevented by approxMask) and mid-step transformation is
computed using quaternion spherical interpolation as

T =Slerp (T;T%t=1/2).

Depending on approxMask, this computation can be avoided by approximating T® =T~.

Finally, current displacement is evaluated as

u® =u + TPAL.

For the normal component, non-incremental evaluation is preferred, giving

uy = x5 = xj[= (r1 +712)

62

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

If this functor is called for L6Geom, local rotation is updated as

0° =@ +TAt(w; —wy)

approxMask
Selectively enable geometrical approximations (bitmask); add the values for approximations
to be enabled.

1 | use previous transformation to transform velocities (which are known at mid-steps),
instead of mid-step transformation computed as quaternion slerp at t=0.5.

2 | do not take average (mid-step) normal when computing relative shear displacement,
use previous value instead

4 | do not re-normalize average (mid-step) normal, if used....

By default, the mask is zero, wherefore none of these approximations is used.

distFactor(=1)
Create interaction if spheres are not futher than |distFactor|*(r14r2). If negative, zero normal
deformation will be set to be the initial value (otherwise, the geometrical distance is the ‘zero’
one).

noRatch(=true)
See Ig2 Sphere Sphere ScGeom.avoid GranularRatcheting.

trsfRenorm(=100)
How often to renormalize trsf; if non-positive, never renormalized (simulation might be un-
stable)

class yade.wrapper.Ig2_Sphere_Sphere_L6Geom(inherits Ig2 Sphere_Sphere L3Geom — IGe-

omFunctor — Functor — Serializable)
Incrementally compute L6Geom for contact of 2 spheres.

class yade.wrapper.Ig2_Sphere_Sphere_ScGeom(inherits IGeomFunctor — Functor — Serializ-

able)
Create/update a ScGeom instance representing the geometry of a contact point between two

:yref:*Spheres<Sphere>‘s.

avoidGranularRatcheting
Define relative velocity so that ratcheting is avoided. It applies for sphere-sphere contacts. It
eventualy also apply for sphere-emulating interactions (i.e. convertible into the ScGeom type),
if the virtual sphere’s motion is defined correctly (see e.g. Ig2 Sphere ChainedCylinder -
CylScGeom.

Short explanation of what we want to avoid :

Numerical ratcheting is best understood considering a small elastic cycle at a contact between
two grains : assuming bl is fixed, impose this displacement to b2 :

1.translation dz in the normal direction
2.rotation a

3.translation -dz (back to the initial position)
4.rotation -a (back to the initial orientation)

If the branch vector used to define the relative shear in rotationxbranch is not constant
(typically if it is defined from the vector center—contactPoint), then the shear displacement
at the end of this cycle is not zero: rotations a and -a are multiplied by branches of different
lengths.

It results in a finite contact force at the end of the cycle even though the positions and
orientations are unchanged, in total contradiction with the elastic nature of the problem. It
could also be seen as an inconsistent energy creation or loss. Given that DEM simulations tend
to generate oscillations around equilibrium (damped mass-spring), it can have a significant

1.6. Interaction Geometry creation 63

Yade Reference Documentation, Release 1st edition

impact on the evolution of the packings, resulting for instance in slow creep in iterations under
constant load.

The solution adopted here to avoid ratcheting is as proposed by McNamara and co-workers.
They analyzed the ratcheting problem in detail - even though they comment on the basis of
a cycle that differs from the one shown above. One will find interesting discussions in e.g.
DOT 10.1103/PhysRevE.77.031304, even though solution it suggests is not fully applied here
(equations of motion are not incorporating alpha, in contradiction with what is suggested by
McNamara et al.).

interactionDetectionFactor
Enlarge both radii by this factor (if >1), to permit creation of distant interactions.

InteractionGeometry will be computed when interactionDetectionFactor*(rad1+rad2) > dis-
tance.

Note: This parameter is functionally coupled with Bol Sphere Aabb::aabbEnlargeFactor,
which will create larger bounding boxes and should be of the same value.

class yade.wrapper.Ig2_Sphere_Sphere_ScGeom6D (inherits Ig2_Sphere_Sphere_ScGeom —

IGeomFunctor — Functor — Serializable)
Create/update a ScGeom6D instance representing the geometry of a contact point between two

:yref:*Spheres<Sphere>‘s, including relative rotations.

creep(=false)
Substract rotational creep from relative rotation. The rotational creep ScGeom6D::twist Creep
is a quaternion and has to be updated inside a constitutive law, see for instance Law2 -
ScGeom6D _CohFrictPhys CohesionMoment.

updateRotations (=true)
Precompute relative rotations. Turning this false can speed up simulations when rotations
are not needed in constitutive laws (e.g. when spheres are compressed without cohesion and
moment in early stage of a triaxial test), but is not foolproof. Change this value only if you
know what you are doing.

class yade.wrapper.Ig2_Tetra_Tetra_TTetraGeom(inherits IGeomFunctor — Functor — Seri-

alizable)
Create/update geometry of collision between 2 tetrahedra (TTetraGeom instance)

class yade.wrapper.Ig2_Wall_Sphere_Dem3DofGeom(inherits IGeomFunctor — Functor — Se-

rializable)
Create/update contact of Wall and Sphere (Dem3DofGeom WallSphere instance)

class yade.wrapper.Ig2_Wall_Sphere_L3Geom(inherits Ig2 Sphere Sphere_L3Geom — IGe-

omFunctor — Functor — Serializable)
Incrementally compute L3Geom for contact between Wall and Sphere. Uses attributes of Ig2 -

Sphere_Sphere L3Geom.

class yade.wrapper.Ig2_Wall_Sphere_ScGeom(inherits IGeomFunctor — Functor — Serializ-

able)
Create/update a ScGeom instance representing intersection of Wall and Sphere.

noRatch(=true)
Avoid granular ratcheting

1.6.2 1GeomDispatcher

class yade.wrapper.IGeomDispatcher (inherits Dispatcher — Engine — Serializable)
Dispatcher calling functors based on received argument type(s).

dispFunctor ((Shape)arg2, (Shape)arg3) — IGeomFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

64 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

dispMatrix([(bool)names:True]) — dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

1.7 Interaction Physics creation

1.7.1 IPhysFunctor

’ Ip2_RpmMat_RpmMat_RpmPhys ‘

’ Ip2_2xNormalinelasticMat_NormallnelasticityPhys ‘

Ip2_FrictMat_FrictMat_CapillaryPhys ‘

Ip2_FrictMat_FrictMat_FrictPhys +7’ Ip2_FrictMat_FrictMat_Vis coFrictPhys

’ Ip2_FrictMat_FrictMat_MindlinPhys ‘

’ Ip2_MomentMat_MomentMat_MomentPhys ‘

IPhys Functor
’ Ip2_WireMat_WireMat_WirePhys ‘

’ Ip2_CpmMat_CpmMat_CpmPhys ‘

’ Ip2_CFpmMat_CFpmMat_CFpmPhys ‘

’ Ip2_CohFrictMat_CohFrictMat_CohFrictPhys ‘

Ip2_2xFrictMat_CSPhys ‘

’ Ip2_ViscEIMat_ViscEIMat_ViscEIPhys ‘

class yade.wrapper.IPhysFunctor (inherits Functor — Serializable)
Functor for creating/updating Interaction::phys objects.

class yade.wrapper.Ip2_2xFrictMat_CSPhys (inherits IPhysFunctor — Functor — Serializable)
Functor creating CSPhys from two FrictMat. See Law2 Dem3Dof CSPhys CundallStrack for
details.

class yade.wrapper.Ip2_2xNormalInelasticMat_NormalInelasticityPhys (inherits IPhys-
Functor — Func-
tor — Serializ-

able)
The RelationShips for using Law2_ ScGeom6D_ NormallnelasticityPhys_ Normallnelasticity

In these RelationShips all the attributes of the interactions (which are of Normallnelas-
ticityPhys type) are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

1.7. Interaction Physics creation 65

Yade Reference Documentation, Release 1st edition

betaR(=0.12)
Parameter for computing the torque-stifness : T-stifness = betaR * Rmoy 2

class yade.wrapper.Ip2_CFpmMat_CFpmMat_CFpmPhys (inherits IPhysFunctor — Functor — Se-

rializable)
Converts 2 CFpmmat instances to CFpmPhys with corresponding parameters.
Alpha(=0)
Defines the ratio ks/kn.
Beta(=0)

Defines the ratio kr/(ks*meanRadius™2) to compute the resistive moment in rotation. [-]

cohesion(=0)
Defines the maximum admissible tangential force in shear FsMax=cohesion*crossSection. [Pal]

cohesiveTresholdIteration(=1)
Should new contacts be cohesive? They will before this iter, they won’t afterward.

eta(=0)
Defines the maximum admissible resistive moment in rotation MtMax=eta*meanRadius*Fn.
[-]

strengthSoftening(=0)

Defines the softening when Dtensile is reached to avoid explosion of the contact. Typically,
when D > Dtensile, Fn=FnMax - (kn/strengthSoftening)*(Dtensile-D). [-]

tensileStrength(=0)
Defines the maximum admissible normal force in traction Fn-
Max=tensileStrength*crossSection. [Pa]

useAlphaBeta (=false)
If true, stiffnesses are computed based on Alpha and Beta.

class yade.wrapper.Ip2_CohFrictMat_CohFrictMat_CohFrictPhys (inherits IPhysFunctor —

Functor — Serializable)
Generates cohesive-frictional interactions with moments. Used in the contact law Law2 Sc-

Geom6D _CohFrictPhys CohesionMoment.

setCohesionNow (=false)
If true, assign cohesion to all existing contacts in current time-step. The flag is turned false
automatically, so that assignment is done in the current timestep only.

setCohesionOnNewContacts (=false)
If true, assign cohesion at all new contacts. If false, only existing contacts can be cohesive (also
see Ip2_ CohFrictMat_ CohFrictMat_ CohFrictPhys::setCohesionNow), and new contacts are
only frictional.

class yade.wrapper.Ip2_CpmMat_CpmMat_CpmPhys (inherits IPhysFunctor — Functor — Serial-

izable)
Convert 2 CpmMat instances to CpmPhys with corresponding parameters. Uses simple (arith-

metic) averages if material are different. Simple copy of parameters is performed if the material is
shared between both particles. See cpm-model for detals.

cohesiveThresholdIter(=10)
Should new contacts be cohesive? They will before this iter#, they will not be afterwards. If
0, they will never be. If negative, they will always be created as cohesive (10 by default).

class yade.wrapper.Ip2_FrictMat_FrictMat_CapillaryPhys (inherits IPhysFunctor — Functor

— Serializable)
RelationShips to use with Law2_ScGeom__ CapillaryPhys_ Capillarity

In these RelationShips all the interaction attributes are computed.

Warning: as in the others Ip2 functors, most of the attributes are computed only once, when
the interaction is new.

66 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

class yade.wrapper.Ip2_FrictMat_FrictMat_FrictPhys (inherits IPhysFunctor — Functor —

Serializable)
Create a FrictPhys from two FrictMats. The compliance of one sphere under symetric point loads

is defined here as 1/(E.r), with E the stiffness of the sphere and r its radius, and corresponds to
a compliance 1/(2.E.r)=1/(E.D) from each contact point. The compliance of the contact itself
will be the sum of compliances from each sphere, i.e. 1/(E.D1)+1/(E.D2) in the general case,
or 1/(E.r) in the special case of equal sizes. Note that summing compliances corresponds to
an harmonic average of stiffnesss, which is how kn is actually computed in the Ip2 FrictMat -
FrictMat_ FrictPhys functor.

The shear stiffness ks of one sphere is defined via the material parameter ElastMat::poisson, as
ks=poisson*kn, and the resulting shear stiffness of the interaction will be also an harmonic average.

frictAngle (=uninitalized)
Instance of MatchMaker determining how to compute interaction’s friction angle. If None,
minimum value is used.

class yade.wrapper.Ip2_FrictMat_FrictMat_MindlinPhys (inherits IPhysFunctor — Functor

— Serializable)
Calculate some physical parameters needed to obtain the normal and shear stiffnesses according to

the Hertz-Mindlin’s formulation (as implemented in PFC).

Viscous parameters can be specified either using coefficients of restitution (e,, es) or viscous
damping coefficient (B, Bs). The following rules apply: #. If the By, (Bs) coefficient is given, it is
assigned to MindlinPhys.betan (MindlinPhys.betas) directly. #. If e, is given, MindlinPhys.betan
is computed using B, = —(logen)/+/7? + (logen)?. The same applies to es, MindlinPhys.betas.
#. Tt is an error (exception) to specify both e, and B, (es and Bs). #. If neither e, nor fy, is
given, zero value for MindlinPhys.betan is used; there will be no viscous effects. #.If neither eg
nor (35 is given, the value of MindlinPhys.betan is used for MindlinPhys.betas as well.

The en, Pn, €s, s are MatchMaker objects; they can be constructed from float values to always
return constant value.

See scripts/test/shots.py for an example of specifying e, based on combination of parameters.

betan (=uninitalized)
Normal viscous damping coefficient f3,.

betas (=uninitalized)
Shear viscous damping coefficient (.

en (=uninitalized)
Normal coefficient of restitution ey .

es (=uninitalized)
Shear coefficient of restitution es.

eta(=0.0)
Coefficient to determine the plastic bending moment

gamma (=0.0)
Surface energy parameter [J/m™2] per each unit contact surface, to derive DMT formulation
from HM

krot (=0.0)
Rotational stiffness for moment contact law

ktwist (=0.0)
Torsional stiffness for moment contact law

class yade.wrapper.Ip2_FrictMat_FrictMat_ViscoFrictPhys (inherits Ip2 FrictMat Frict-

Mat_FrictPhys — IPhysFunc-

tor — Functor — Serializable)
Create a FrictPhys from two FrictMats. The compliance of one sphere under symetric point loads

is defined here as 1/(E.r), with E the stiffness of the sphere and r its radius, and corresponds to
a compliance 1/(2.E.r)=1/(E.D) from each contact point. The compliance of the contact itself
will be the sum of compliances from each sphere, i.e. 1/(E.D1)+1/(E.D2) in the general case,

1.7.

Interaction Physics creation 67

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/shots.py

Yade Reference Documentation, Release 1st edition

or 1/(E.r) in the special case of equal sizes. Note that summing compliances corresponds to
an harmonic average of stiffnesss, which is how kn is actually computed in the Ip2 FrictMat -
FrictMat_ FrictPhys functor.

The shear stiffness ks of one sphere is defined via the material parameter ElastMat::poisson, as
ks=poisson*kn, and the resulting shear stiffness of the interaction will be also an harmonic average.

class yade.wrapper.Ip2_MomentMat_MomentMat_MomentPhys (inherits IPhysFunctor — Functor
— Serializable)
Create MomentPhys from 2 instances of MomentMat.
1.If boolean userInputStiffness=true & useAlphaBeta=false, users can input Knormal, Kshear
and Krotate directly. Then, kn ks and kr will be equal to these values, rather than calculated
E and v.

2.If boolean userInputStiffness=true & useAlphaBeta=true, users input Knormal, Alpha and
Beta. Then ks and kr are calculated from alpha & beta respectively.

3.If both are false, it calculates kn and ks are calculated from E and v, whilst kr = 0.
Alpha(=0)
Ratio of Ks/Kn

Beta(=0)
Ratio to calculate Kr

Knormal (=0)
Allows user to input stiffness properties from triaxial test. These will be passed to Moment-
Phys or NormShearPhys

Krotate(=0)
Allows user to input stiffness properties from triaxial test. These will be passed to Moment-
Phys or NormShearPhys

Kshear (=0)
Allows user to input stiffness properties from triaxial test. These will be passed to Moment-
Phys or NormShearPhys

useAlphaBeta (=false)
for users to choose whether to input stiffness directly or use ratios to calculate Ks/Kn

userInputStiffness(=false)
for users to choose whether to input stiffness directly or use ratios to calculate Ks/Kn

class yade.wrapper.Ip2_RpmMat_RpmMat_RpmPhys (inherits [PhysFunctor — Functor — Serial-
izable)
Convert 2 RpmMat instances to RpmPhys with corresponding parameters.
initDistance(=0)
Initial distance between spheres at the first step.

class yade.wrapper.Ip2_ViscElMat_ViscElMat_ViscElPhys (inherits IPhysFunctor — Functor
— Serializable)

Convert 2 instances of ViscEIMat to ViscEIPhys using the rule of consecutive connection.

class yade.wrapper.Ip2_WireMat_WireMat_WirePhys (inherits IPhysFunctor — Functor — Se-
i rializable)
Converts 2 WireMat instances to WirePhys with corresponding parameters.
linkThresholdIteration(=1)
Iteration to create the link.

1.7.2 IPhysDispatcher

class yade.wrapper.IPhysDispatcher (inherits Dispatcher — Engine — Serializable)
Dispatcher calling functors based on received argument type(s).

68 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

dispFunctor ((Material)arg2, (Material)arg3) — IPhysFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)nameS:True]) — dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

1.8 Constitutive laws

1.8.1 LawFunctor

‘ Law2_ScGeom_FrictPhys_CundallStrack F—{ Law2_ScGeom_ViscoFrictPhys_CundallStrack

Law2_Dem3DofGeom_RockPMPhys_Rpm ‘

Law2_ScGeom_CFpmPhys_CohesiveFrictionalPM ‘

Law2_CylScGeom_FrictPhys_CundallStrack ‘

‘ Law2_Dem3DofGeom_CpmPhys_Cpm ‘

‘ Law2_ScGeom_MindlinPhys_HertzWithLinearShear ‘

‘ Law2_ScGeom6D_NormallnelasticityPhys_Normallnelasticity ‘

Law2_L3Geom_FrictPhys_EIPerfPI %= } Law2_L6Geom_FrictPhys_Linear

I
,
‘
\

Law2_Dem3DofGeom_FrictPhys_CundallStrack ‘

Law2_ScGeom_WirePhys_WirePM ‘

Law2_ScGeom6D_CohFrictPhys_CohesionMoment ‘

Law2_ScGeom_ViscEIPhys_Basic ‘

Law2_SCG_MomentPhys_Cohesionless MomentRotation ‘

Law2_ScGeom_MindlinPhys_Mindlin ‘

‘ Law2_Dem3Dof_CSPhys_CundallStrack ‘

‘ Law2_ScGeom_MindlinPhys_MindlinDeresiewitz ‘

class yade.wrapper.LawFunctor (inherits Functor — Serializable)
Functor for applying constitutive laws on interactions.

class yade.wrapper.Law2_CylScGeom_FrictPhys_CundallStrack(inherits LawFunctor — Func-

tor — Serializable)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-

ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) F,, = min(kn,u,,0). The

1.8. Constitutive laws 69

Yade Reference Documentation, Release 1st edition

shear force is Fs = ksug, the plasticity condition defines the maximum value of the shear force :
FPex = F tan(@), with ¢ the friction angle.

Note: This law uses ScGeom; there is also functionally equivalent Law2 Dem3DofGeom -
FrictPhys CundallStrack, which uses Dem3DofGeom (sphere-box interactions are not implemented
for the latest).

Note: This law is well tested in the context of triaxial simulation, and has been used for a
number of published results (see e.g. [Scholtes2009b] and other papers from the same authors).
It is generalised by Law2_ScGeom6D__CohFrictPhys_ CohesionMoment, which adds cohesion and
moments at contact.

neverErase (=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2_ScGeom_ CapillaryPhys_ Capillarity)

class yade.wrapper.Law2_Dem3DofGeom_CpmPhys_Cpm(inherits LawFunctor — Functor — Seri-
alizable)
Constitutive law for the cpm-model.
epsSoft (=-3e-3, approximates confinement -20MPa precisely, -100MPa a little over, -200 and

-400 are OK (secant))
Strain at which softening in compression starts (non-negative to deactivate)

funcG ((float)epsCrackOnset, (ﬂoat)epschture[, (bool)neverDamage:False]) — float
Damage evolution law, evaluating the w parameter. kp is historically maximum strain, ep-
sCrackOnset (¢o) = CpmPhys.epsCrackOnset, epsFracture = CpmPhys.epsFracture; if never-
Damage is True, the value returned will always be 0 (no damage).

omegaThreshold(=1., >=1. to deactivate, i.e. never delete any contacts)
damage after which the contact disappears (<1), since omega reaches 1 only for strain ——+o0

relKnSoft(=.3)
Relative rigidity of the softening branch in compression (O=perfect elastic-plastic, <0 soften-
ing, >0 hardening)

yieldEllipseShift(=NalN)
horizontal scaling of the ellipse (shifts on the +x axis as interactions with +y are given)

yieldLogSpeed(=.1)
scaling in the logarithmic yield surface (should be <1 for realistic results; >=0 for meaningful
results)

yieldSigmaTMagnitude ((float)sigmaN, (float)omega, (float)undamaged Cohesion,

(float)tanFrictionAngle) — float
Return radius of yield surface for given material and state parameters; uses attributes of the

current instance (yieldSurfType etc), change them before calling if you need that.

yieldSurfType(=2)
yield function: 0: mohr-coulomb (original); 1: parabolic; 2: logarithmic, 3: log+lin_ tension,
4: elliptic, 5: elliptic+log

class yade.wrapper.Law2_Dem3DofGeom_FrictPhys_CundallStrack(inherits LawFunctor —
Functor — Serializable)
Constitutive law for linear compression, no tension, and linear plasticity surface.
No longer maintained and linking to known bugs; :consider using yref: Law2__ScGeom__ FrictPhys -
CundallStrack.

class yade.wrapper.Law2_Dem3DofGeom_RockPMPhys_Rpm(inherits LawFunctor — Functor — Se-

rializable)
Constitutive law for the Rpm model

70 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

class yade.wrapper.Law2_Dem3Dof_CSPhys_CundallStrack (inherits LawFunctor — Functor —

Serializable)
Basic constitutive law published originally by Cundall&Strack; it has normal and shear stiffnesses

(Kn, Kn) and dry Coulomb friction. Operates on associated Dem3DofGeom and CSPhys instances.

class yade.wrapper.Law2_L3Geom_FrictPhys_ElPerfPl (inherits LawFunctor — Functor — Se-

rializable)
Basic law for testing L3Geom; it bears no cohesion (unless noBreak is True), and plastic slip obeys

the Mohr-Coulomb criterion (unless noSlip is True).

noBreak (=false)
Do not break contacts when particles separate.

noSlip(=false)
No plastic slipping.

class yade.wrapper.Law2_L6Geom_FrictPhys_Linear (inherits Law2 L3Geom__ FrictPhys_ -
ElPerfPl — LawFunctor — Functor —
Serializable)
Basic law for testing L6Geom — linear in both normal and shear sense, without slip or breakage.
charLen(=1)
Characteristic length with the meaning of the stiffness ratios bending/shear and tor-
sion/normal.

class yade.wrapper.Law2_SCG_MomentPhys_CohesionlessMomentRotation (inherits LawFunc-
tor — Functor —

Serializable)
Contact law based on Plassiard et al. (2009) : A spherical discrete element model: calibration

procedure and incremental response. The functionality has been verified with results in the paper.

The contribution of stiffnesses are scaled according to the radius of the particle, as implemented
in that paper.

See also associated classes MomentMat, Ip2 MomentMat MomentMat MomentPhys, Moment-
Phys.

Note: This constitutive law can be used with triaxial test, but the following significant changes in
code have to be made: Ip2 MomentMat_MomentMat_MomentPhys and Law2 SCG_Moment-
Phys_ CohesionlessMomentRotation have to be added. Since it uses ScGeom, it uses boxes rather
than facets. Spheres and boxes have to be changed to MomentMat rather than FrictMat.

preventGranularRatcheting (=false)
77

class yade.wrapper.Law2_ScGeom6D_CohFrictPhys_CohesionMoment (inherits LawFunctor —

Functor — Serializable)
Law for linear traction-compression-bending-twisting, with cohesion+friction and Mohr-Coulomb

plasticity surface. This law adds adhesion and moments to Law2 ScGeom_ FrictPhys Cundall-
Strack.

The normal force is (with the convention of positive tensile forces) F, = min(kpy *un, an), with a,
the normal adhesion. The shear force is Fg = kg *ug, the plasticity condition defines the maximum
value of the shear force, by default Fi*®* = F,, * tan(¢) + as, with ¢ the friction angle and a,
the shear adhesion. If CohFrictPhys::cohesionDisableFriction is True, friction is ignored as long as
adhesion is active, and the maximum shear force is only F*“* = a;.

If the maximum tensile or maximum shear force is reached and CohFrictPhys::fragile =True (de-
fault), the cohesive link is broken, and an, as are set back to zero. If a tensile force is present,
the contact is lost, else the shear strength is FT*** = F,, x tan(¢). If CohFrictPhys::fragile =False
(in course of implementation), the behaviour is perfectly plastic, and the shear strength is kept
constant.

If Law2_ ScGeom6D_ CohFrictPhys CohesionMoment::momentRotationLaw =True, bending and
twisting moments are computed using a linear law with moduli respectively ki and k, (the two
values are the same currently), so that the moments are : My, = kp * Op and My = k¢ * Oy, with

1.8. Constitutive laws 71

Yade Reference Documentation, Release 1st edition

Oy, the relative rotations between interacting bodies. There is no maximum value of moments in
the current implementation, though they could be added in the future.

Creep at contact is implemented in this law, as defined in [Hassan2010]. If activated, there is a
viscous behaviour of the shear and twisting components, and the evolution of the elastic parts of
shear displacement and relative twist is given by dus ./dt = —Fs/vs and d@¢ c/dt = —M/vy.

Note: Periodicity is not handled yet in this law.

always_use_moment_law(=false)
If true, use bending/twisting moments at all contacts. If false, compute moments only for
cohesive contacts.

creepStiffness(=1)

creep_viscosity(=1)
creep viscosity [Pa.s/m]. probably should be moved to Ip2_ CohFrictMat_CohFrictMat_ -
CohFrictPhys...

neverErase (=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2 ScGeom CapillaryPhys Capillarity)

shear_creep (=false)
activate creep on the shear force, using CohesiveFrictionalContactLaw::creep viscosity.

shear_creep2(=false)
activate SLS (http://en.wikipedia.org/wiki/Standard Linear Solid model) creep on the
shear force, using CohesiveFrictionalContactLaw::creep viscosity.

twist_creep(=false)
activate creep on the twisting moment, using CohesiveFrictionalContactLaw::creep viscosity.

useIncrementalForm(=false)
use the incremental formulation to compute bending and twisting moments. Creep on the
twisting moment is not included in such a case.

class yade.wrapper.Law2_ScGeom6D_NormalInelasticityPhys_NormalInelasticity (¢nherits

Law-
Functor
— Func-
tor —
Serializ-

able)
Contact law used to simulate granulate filler in rock joints [Duriez2009a], [Duriez2010]. It includes
possibility of cohesion, moment transfer and inelastic compression behaviour (to reproduce the
normal inelasticity observed for rock joints, for the latter).

The moment transfer relation corresponds to the adaptation of the work of Plassiard & Belheine
(see in [DeghmReport2006] for example), which was realized by J. Kozicki, and is now coded in
ScGeom6D.

As others LawFunctor, it uses pre-computed data of the interactions (rigidities, friction angles
-with their tan()-, orientations of the interactions); this work is done here in Ip2_2xNormallnelas-
ticMat_ NormallnelasticityPhys.

To use this you should also use NormallnelasticMat as material type of the bodies.
The effects of this law are illustrated in scripts/normallnelasticity Test.py

momentAlwaysElastic (=false)
boolean, true=> the torque (computed only if momentRotationLaw !!) is not limited by a
plastic threshold

72

Chapter 1. Class reference (yade.wrapper module)

http://en.wikipedia.org/wiki/Standard_Linear_Solid_model

Yade Reference Documentation, Release 1st edition

momentRotationLaw (=true)
boolean, true=> computation of a torque (against relative rotation) exchanged between par-
ticles

class yade.wrapper.Law2_ScGeom_CFpmPhys_CohesiveFrictionalPM(inherits LawFunctor —
Functor — Serializable)
Constitutive law for the CFpm model.
preventGranularRatcheting(=true)
If true rotations are computed such as granular ratcheting is prevented. See article
[Alonso2004], pg. 3-10 — and a lot more papers from the same authors).

class yade.wrapper.Law2_ScGeom_FrictPhys_CundallStrack(inherits LawFunctor — Functor

— Serializable)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-

ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) F, = min(kqun,0). The
shear force is Fg = ksug, the plasticity condition defines the maximum value of the shear force :
FraX = F, tan(¢), with ¢ the friction angle.

This law is well tested in the context of triaxial simulation, and has been used for a number of
published results (see e.g. [Scholtes2009b] and other papers from the same authors). It is gener-
alised by Law2 ScGeom6D CohFrictPhys CohesionMoment, which adds cohesion and moments
at contact.

elasticEnergy() — float
Compute and return the total elastic energy in all “FrictPhys” contacts

initPlasticDissipation((float)arg2) — None
Initialize cummulated plastic dissipation to a value (0 by default).

neverErase (=false)
Keep interactions even if particles go away from each other (only in case another constitutive
law is in the scene, e.g. Law2 ScGeom CapillaryPhys Capillarity)

plasticDissipation() — float
Total energy dissipated in plastic slips at all FrictPhys contacts. Computed only if Law2 -
ScGeom_ FrictPhys CundallStrack::traceEnergy is true.

sphericalBodies (=true)
If true, compute branch vectors from radii (faster), else use contactPoint-position. Turning
this flag true is safe for sphere-sphere contacts and a few other specific cases. It will give
wrong values of torques on facets or boxes.

traceEnergy (=false)
Define the total energy dissipated in plastic slips at all contacts. This will trace only plastic
energy in this law, see O.trackEnergy for a more complete energies tracing

class yade.wrapper.Law2_ScGeom_MindlinPhys_HertzWithLinearShear (inherits LawFunc-
tor — Functor —
Serializable)

Constitutive law for the Hertz formulation (using MindlinPhys.kno) and linear beahvior in shear
(using MindlinPhys.kso for stiffness and FrictPhys.tangensOfFrictionAngle).

Note: No viscosity or damping. If you need those, look at Law2 ScGeom MindlinPhys Mindlin,
which also includes non-linear Mindlin shear.

nonLin(=0)
Shear force nonlinearity (the value determines how many features of the non-linearity are
taken in account). 1: ks as in HM 2: shearElastic increment computed as in HM 3. granular
ratcheting disabled.

class yade.wrapper.Law2_ScGeom_MindlinPhys_Mindlin(inherits LawFunctor — Functor — Se-

rializable)
Constitutive law for the Hertz-Mindlin formulation. It includes non linear elasticity in the normal

1.8. Constitutive laws 73

Yade Reference Documentation, Release 1st edition

direction as predicted by Hertz for two non-conforming elastic contact bodies. In the shear direc-
tion, instead, it reseambles the simplified case without slip discussed in Mindlin’s paper, where a
linear relationship between shear force and tangential displacement is provided. Finally, the Mohr-
Coulomb criterion is employed to established the maximum friction force which can be developed
at the contact. Moreover, it is also possible to include the effect of linear viscous damping through
the definition of the parameters 3, and f3.

calcEnergy (=false)
bool to calculate energy terms (shear potential energy, dissipation of energy due to friction
and dissipation of energy due to normal and tangential damping)

contactsAdhesive () — float
Compute total number of adhesive contacts.

frictionDissipation(=uninitalized)
Energy dissipation due to sliding

includeAdhesion (=false)
bool to include the adhesion force following the DMT formulation. If true, also the normal
elastic energy takes into account the adhesion effect.

includeMoment (=false)
bool to consider rolling resistance (if Ip2 FrictMat FrictMat_MindlinPhys::eta is 0.0, no
plastic condition is applied.)

normDampDissip (=uninitalized)
Energy dissipated by normal damping

normElastEnergy () — float
Compute normal elastic potential energy. It handles the DMT formulation if Law2 ScGeom_ -
MindlinPhys_Mindlin::includeAdhesion is set to true.

preventGranularRatcheting (=true)
bool to avoid granular ratcheting

ratioSlidingContacts() — float
Return the ratio between the number of contacts sliding to the total number at a given time.

shearDampDissip (=uninitalized)
Energy dissipated by tangential damping

shearEnergy (=uninitalized)
Shear elastic potential energy

class yade.wrapper.Law2_ScGeom_MindlinPhys_MindlinDeresiewitz (inherits LawFunctor —

Functor — Serializable)
Hertz-Mindlin contact law with partial slip solution, as described in [Thornton1991].

class yade.wrapper.Law2_ScGeom_ViscElPhys_Basic (inherits LawFunctor — Functor — Seri-

alizable)
Linear viscoelastic model operating on ScGeom and ViscEIPhys.

class yade.wrapper.Law2_ScGeom_ViscoFrictPhys_CundallStrack(inherits Law2_ScGeom_ -

FrictPhys_ CundallStrack
— LawFunctor — Functor

— Serializable)
Law for linear compression, and Mohr-Coulomb plasticity surface without cohesion. This law imple-

ments the classical linear elastic-plastic law from [CundallStrack1979] (see also [Pfc3dManual30]).
The normal force is (with the convention of positive tensile forces) F,, = min(kn,u,,0). The
shear force is Fs = ksus, the plasticity condition defines the maximum value of the shear force :
FPex = F tan(@), with ¢ the friction angle.

This law is well tested in the context of triaxial simulation, and has been used for a number of
published results (see e.g. [Scholtes2009b] and other papers from the same authors). It is gener-
alised by Law2 ScGeom6D CohFrictPhys CohesionMoment, which adds cohesion and moments
at contact.

creepStiffness(=1)

74

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

shearCreep (=false)
viscosity(=1)

class yade.wrapper.Law2_ScGeom_WirePhys_WirePM(inherits LawFunctor — Functor — Serial-

izable)
Constitutive law for the wire model.

linkThresholdIteration(=1)
Iteration to create the link.

1.8.2 LawDispatcher

class yade.wrapper.LawDispatcher (inherits Dispatcher — Engine — Serializable)
Dispatcher calling functors based on received argument type(s).

dispFunctor ((IGeom)arg2, (IPhys)arg3) — LawFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names:Tfrue]) — dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

1.9 Callbacks

IntrCallback SumintrForcesCb

class yade.wrapper.IntrCallback (inherits Serializable)
Abstract callback object which will be called for every (real) Interaction after the interaction has
been processed by InteractionLoop.

At the beginning of the interaction loop, stepInit is called, initializing the object; it returns either
NULL (to deactivate the callback during this time step) or pointer to function, which will then be
passed (1) pointer to the callback object itself and (2) pointer to Interaction.

Note: (NOT YET DONE) This functionality is accessible from python by passing 4th argument
to InteractionLoop constructor, or by appending the callback object to InteractionLoop::callbacks.

class yade.wrapper.SumIntrForcesCb (inherits IntrCallback — Serializable)
Callback summing magnitudes of forces over all interactions. IPhys of interactions must derive
from NormShearPhys (responsability fo the user).

1.9. Callbacks 75

Yade Reference Documentation, Release 1st edition

1.10 Preprocessors

CapillaryTriaxialTest

CohesiveTriaxialTest

FileGenerator

SimpleShear

TriaxialTest

class yade.wrapper.FileGenerator (inherits Serializable)

Base class for scene generators, preprocessors.

generate ((str)out) — None
Generate scene, save to given file

load() — None
Generate scene, save to temporary file and load immediately

class yade.wrapper.CapillaryTriaxialTest (inherits FileGenerator — Serializable)

This preprocessor is a variant of TriaxialTest, including the model of capillary forces developed
as part of the PhD of Luc Scholtes. See the documentation of Law2_ScGeom_ CapillaryPhys -
Capillarity or the main page https://yade-dem.org/wiki/CapillaryTriaxial Test, for more details.

Results obtained with this preprocessor were reported for instance in ‘Scholtes et al. Microme-
chanics of granular materials with capillary effects. International Journal of Engineering Science
2009,(47)1, 64-75.

CapillaryPressure(=0)
Define succion in the packing [Pa]. This is the value used in the capillary model.

Key (_» u)
A code that is added to output filenames.

Rdispersion(=0.3)
Normalized standard deviation of generated sizes.

StabilityCriterion(=0.01)
Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile (=" /WallStresses Water”+Key)

autoCompressionActivation(=true)
Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload (=true)
auto adjust the isotropic stress state from TriaxialTest::sigmalsoCompaction to Triaxial-
Test::sigmal.ateral Confinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

biaxial2dTest (=false)
FIXME : what is that?

76

Chapter 1. Class reference (yade.wrapper module)

https://yade-dem.org/wiki/CapillaryTriaxialTest

Yade Reference Documentation, Release 1st edition

binaryFusion(=true)
Defines how overlapping bridges affect the capillary forces (see CapillaryTriaxial-
Test::fusionDetection). If binary=true, the force is null as soon as there is an overlap detected,
if not, the force is divided by the number of overlaps.

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxWalls (=true)
Use boxes for boundaries (recommended).

boxYoungModulus (=15000000.0)
Stiffness of boxes.

capillaryStressRecordFile (=" /capStresses”’+Key)

compactionFrictionDeg(=sphereFrictionDeg)
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.

contactStressRecordFile (=" /contStresses "+ Key)
dampingForce(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

defaultDt (=0.0001)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density (=2600)
density of spheres

facetWalls (=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims (="%)
string that contains some subset (max. 2) of {'x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_ radius is prescribed: scaling will be applied on the
rest.

fixedPoroCompaction(=false)
flag to choose an isotropic compaction until a fixed porosity choosing a same translation speed
for the six walls

fixedPorosity(=1)
FIXME : what is that?

fusionDetection(=false)
test overlaps between liquid bridges on modify forces if overlaps exist

importFilename (="%)
File with positions and sizes of spheres.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

lowerCorner (=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

1.10. Preprocessors 7

Yade Reference Documentation, Release 1st edition

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles (=false)
Do not create any files during run (.xml, .spheres, wall stress records)

number0fGrains (=400)
Number of generated spheres.

radiusControlInterval (=10)
interval between size changes when growing spheres.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

recordIntervallter (=20)
interval between file outputs

sigmaIsoCompaction(=50000)
Confining stress during isotropic compaction.

sigmalateralConfinement (=50000)
Lateral stress during triaxial loading. An isotropic unloading is performed if the value is not
equal to CapillaryTriaxial Test::SigmalsoCompaction.

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn (=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus (=15000000.0)
Stiffness of spheres.

strainRate(=1)
Strain rate in triaxial loading.

thickness (=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepOutputInterval (=50)
interval for outputing general information on the simulation (stress,unbalanced force,...)

timeStepUpdatelInterval (=50)
interval for GlobalStiffnessTimeStepper

upperCorner (=Vector3r(1, 1, 1))
Upper corner of the box.

wallOversizeFactor(=1.%)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval (=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls (=false)
Use walls for boundaries (not tested)

water (=true)
activate capillary model

class yade.wrapper.CohesiveTriaxialTest (inherits FileGenerator — Serializable)
This preprocessor is a variant of TriaxialTest using the cohesive-frictional contact law with mo-
ments. It sets up a scene for cohesive triaxial tests. See full documentation at http://yade-
dem.org/wiki/Triaxial Test.

78 Chapter 1. Class reference (yade.wrapper module)

http://yade-dem.org/wiki/TriaxialTest
http://yade-dem.org/wiki/TriaxialTest

Yade Reference Documentation, Release 1st edition

Cohesion is initially 0 by default. The suggested usage is to define cohesion values in a second step,
after isotropic compaction : define shear and normal cohesions in Ip2 CohFrictMat_CohFrict-
Mat_ CohFrictPhys, then turn Ip2 CohFrictMat_CohFrictMat_ CohFrictPhys::setCohesionNow
true to assign them at each contact at next iteration.
Key(:”({)
A code that is added to output filenames.
StabilityCriterion(=0.01)
Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(="./Cohesive WallStresses "+ Key)

autoCompressionActivation(=true)
Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload (=true)
auto adjust the isotropic stress state from TriaxialTest::sigmalsoCompaction to Triaxial-
Test::sigmal.ateral Confinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

biaxial2dTest (=false)
FIXME : what is that?

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxWalls (=true)
Use boxes for boundaries (recommended).

boxYoungModulus (=15000000.0)
Stiffness of boxes.

compactionFrictionDeg(=sphereFrictionDeg)
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.
dampingForce (=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

defaultDt (=0.001)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density(=2600)
density of spheres
facetWalls (=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims (="%)
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_ radius is prescribed: scaling will be applied on the
rest.

1.10. Preprocessors 79

Yade Reference Documentation, Release 1st edition

fixedPoroCompaction(=false)
flag to choose an isotropic compaction until a fixed porosity choosing a same translation speed
for the six walls

fixedPorosity(=1)
FIXME : what is that?

importFilename (="%)
File with positions and sizes of spheres.

internalCompaction(=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

lowerCorner (=Vector3r(0, 0, 0))
Lower corner of the box.

maxMultiplier(=1.01)

max multiplier of diameters during internal compaction (initial fast increase)
maxWallVelocity(=10)

max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles (=false)
Do not create any files during run (.xml, .spheres, wall stress records)

normalCohesion(=0)
Material parameter used to define contact strength in tension.

number0fGrains (=/00)
Number of generated spheres.

radiusControlInterval (=10)
interval between size changes when growing spheres.

radiusDeviation(=0.3)
Normalized standard deviation of generated sizes.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

recordIntervallter (=20)
interval between file outputs

setCohesionOnNewContacts (=false)
create cohesionless (False) or cohesive (True) interactions for new contacts.

shearCohesion(=0)
Material parameter used to define shear strength of contacts.

sigmaIsoCompaction(=50000)
Confining stress during isotropic compaction.

sigmaLateralConfinement (=50000)
Lateral stress during triaxial loading. An isotropic unloading is performed if the value is not
equal to TriaxialTest::sigmalsoCompaction.

sphereFrictionDeg(=18.0)

Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn (=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus (=15000000.0)
Stiffness of spheres.

strainRate(=0.1)
Strain rate in triaxial loading.

80

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

thickness (=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepUpdateInterval (=50)
interval for GlobalStiffnessTimeStepper

upperCorner (=Vector3r(1, 1, 1))
Upper corner of the box.

wallOversizeFactor(=1.%)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval (=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls (=false)
Use walls for boundaries (not tested)

class yade.wrapper.SimpleShear (inherits FileGenerator — Serializable)
Preprocessor for creating a numerical model of a simple shear box.

» Boxes (6) constitute the different sides of the box itself

« Spheres are contained in the box. The sample could be generated via the same method used in
Triaxial Test Preprocesor (=> see GenerateCloud) or by reading a text file containing positions
and radii of a sample (=> see ImportCloud). This last one is the one by default used by this
PreProcessor as it is written here => you need to have such a file.

Thanks to the Engines (in pkg/common/Engine/PartialEngine) KinemCNDEngine,
KinemCNSEngine and KinemCNLEngine, respectively constant normal displacement,
constant normal rigidity and constant normal stress are possible to execute over such
samples.

NB about micro-parameters : their values correspond to those used in [Duriez2009a].

boxPoissonRatio(=0.04)
value of ElastMat::poisson for the spheres [-]

boxYoungModulus (=4.0e9)
value of ElastMat::young for the boxes [Pa]

density (=2600)
density of the spheres [kg/m?3]

filename (=". /porosite0 44.txt”)
file with the list of spheres centers and radii

gravApplied (=false)
depending on this, GravityEngine is added or not to the scene to take into account the weight
of particles
gravity (=Vector3r(0, -9.81, 0))
vector corresponding to used gravity [m/s?]
height (=0.02)
initial height (along y-axis) of the shear box [m]
length(=0.1)
initial length (along x-axis) of the shear box [m]

sphereFrictionDeg(=37)
value of ElastMat::poisson for the spheres [°] (the necessary conversion in rad is done auto-
matically)

spherePoissonRatio (=0.04)
value of ElastMat::poisson for the spheres [-]

1.10. Preprocessors 81

Yade Reference Documentation, Release 1st edition

sphereYoungModulus (=4.0e9)
value of ElastMat::young for the spheres [Pa]

thickness (=0.001)
thickness of the boxes constituting the shear box [m]

timeStepUpdatelInterval (=50)
value of TimeStepper::timeStepUpdatelnterval for the TimeStepper used here

width(=0.04)
initial width (along z-axis) of the shear box [m]

class yade.wrapper.TriaxialTest (inherits FileGenerator — Serializable)
Create a scene for triaxal test.

Introduction Yade includes tools to simulate triaxial tests on particles assemblies. This pre-
processor (and variants like e.g. CapillaryTriaxialTest) illustrate how to use them. It generates
a scene which will - by default - go through the following steps :

e generate random loose packings in a parallelepiped.

o compress the packing isotropicaly, either squeezing the packing between moving rigid
boxes or expanding the particles while boxes are fixed (depending on flag internalCom-
paction). The confining pressure in this stage is defined via sigmalsoCompaction.

e when the packing is dense and stable, simulate a loading path and get the mechanical
response as a result.

The default loading path corresponds to a constant lateral stress (sigmalLateralConfinement)
in 2 directions and constant strain rate on the third direction. This default loading path is
performed when the flag autoCompressionActivation it True, otherwise the simulation stops
after isotropic compression.

Different loading paths might be performed. In order to define them, the user can modify
the flags found in engine TriaxialStressController at any point in the simulation (in c++).
If TriaxialStressController.wall_X_activated is true boundary X is moved automati-
cally to maintain the defined stress level sigmalN (see axis conventions below). If false the
boundary is not controlled by the engine at all. In that case the user is free to prescribe fixed
position, constant velocity, or more complex conditions.

Note: Axis conventions. Boundaries perpendicular to the x axis are called “left” and “right”,
y corresponds to “top” and “bottom”, and axis z to “front” and “back”. In the default loading
path, strain rate is assigned along y, and constant stresses are assigned on z and z.

Essential engines

1. The Trixaial CompressionEngine is used for controlling the state of the sample and simu-
lating loading paths. Triaxial CompressionEngine inherits from TriaxialStressController,
which computes stress- and strain-like quantities in the packing and maintain a constant
level of stress at each boundary. TriaxialCompressionEngine has few more members in
order to impose constant strain rate and control the transition between isotropic com-
pression and triaxial test. Transitions are defined by changing some flags of the Triaxial-
StressController, switching from/to imposed strain rate to/from imposed stress.

2. The class TriaxialStateRecorder is used to write to a file the history of stresses and strains.

3. TriaxialTest is using GlobalStiffnessTimeStepper to compute an appropriate At for the
numerical scheme.

Note: TriaxialStressController::ComputeUnbalancedForce returns a value that can
be useful for evaluating the stability of the packing. It is defined as (mean force on parti-
cles)/(mean contact force), so that it tends to 0 in a stable packing. This parameter is checked
by Triaxial CompressionEngine to switch from one stage of the simulation to the next one (e.g.
stop isotropic confinment and start axial loading)

82 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

Frequently Asked Questions

1.How is generated the packing? How to change particles sizes distribution? Why do I have a m
The initial positioning of spheres is done by generating random (x,y,z) in a box and
checking if a sphere of radius R (R also randomly generated with respect to a uniform
distribution between mean*(1-std_dev) and mean*(1+std_dev) can be inserted at this
location without overlaping with others.

If the sphere overlaps, new (x,y,z)’s are generated until a free position for the new sphere is
found. This explains the message you have: after 3000 trial-and-error, the sphere couldn’t
be placed, and the algorithm stops.

You get the message above if you try to generate an initialy dense packing, which is not
possible with this algorithm. It can only generate clouds. You should keep the default
value of porosity (n~0.7), or even increase if it is still to low in some cases. The dense
state will be obtained in the second step (compaction, see below).

2.How is the compaction done, what are the parameters maxWallVelocity and finalMaxMultiplie

Compaction is done
(a) by moving rigid boxes or

(b) by increasing the sizes of the particles (decided using the option internalCompaction
size increase).

Both algorithm needs numerical parameters to prevent instabilities. For instance, with
the method (1) maxWallVelocity is the maximum wall velocity, with method (2) final-
MaxMultiplier is the max value of the multiplier applied on sizes at each iteration (always
something like 1.00001).

3.During the simulation of triaxial compression test, the wall in one direction moves with an inc:

The control of stress on a boundary is based on the total stiffness K of all contacts
between the packing and this boundary. In short, at each step, displacement=stress_ -
error/K. This algorithm is implemented in TriaxialStressController, and the control
itself is in TriaxialStressController::ControlExternalStress. The control can
be turned off independently for each boundary, using the flags wall XXX_activated,
with XXX {top, bottom, left, right, back, front}. The imposed sress is a unique value
(sigma__iso) for all directions if TriaxialStressController.isAxisymetric, or 3 independent
values sigmal, sigma2, sigmad.

4. Which value of friction angle do you use during the compaction phase of the Triaxial Test?

The friction during the compaction (whether you are using the expansion method or
the compression one for the specimen generation) can be anything between 0 and the
final value used during the Triaxial phase. Note that higher friction than the final one
would result in volumetric collapse at the beginning of the test. The purpose of using a
different value of friction during this phase is related to the fact that the final porosity
you get at the end of the sample generation essentially depends on it as well as on the
assumed Particle Size Distribution. Changing the initial value of friction will get to a
different value of the final porosity.

5.Which is the aim of the bool isRadiusControlIteration? This internal variable (up-
dated automatically) is true each N timesteps (with N=radiusControllnterval). For other
timesteps, there is no expansion. Cycling without expanding is just a way to speed up the
simulation, based on the idea that 1% increase each 10 iterations needs less operations
than 0.1% at each iteration, but will give similar results.

6.How comes the unbalanced force reaches a low value only after many timesteps in the compact
The value of unbalanced force (dimensionless) is expected to reach low value (i.e. identi-
fying a static-equilibrium condition for the specimen) only at the end of the compaction
phase. The code is not aiming at simulating a quasistatic isotropic compaction process,
it is only giving a stable packing at the end of it.

1.10. Preprocessors 83

Yade Reference Documentation, Release 1st edition

Key(:v«)
A code that is added to output filenames.

StabilityCriterion(=0.01)
Value of unbalanced force for which the system is considered stable. Used in conditionals to
switch between loading stages.

WallStressRecordFile(="./WallStresses’+Key)

autoCompressionActivation(=true)
Do we just want to generate a stable packing under isotropic pressure (false) or do we want
the triaxial loading to start automatically right after compaction stage (true)?

autoStopSimulation(=false)
freeze the simulation when conditions are reached (don’t activate this if you want to be able
to run/stop from Qt GUI)

autoUnload (=true)
auto adjust the isotropic stress state from TriaxialTest::sigmalsoCompaction to Triaxial-
Test::sigmal.ateral Confinement if they have different values. See docs for TriaxialCompres-
sionEngine::autoUnload

biaxial2dTest (=false)
FIXME : what is that?

boxFrictionDeg(=0.0)
Friction angle [°] of boundaries contacts.

boxKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for boxes.

boxYoungModulus (=15000000.0)
Stiffness of boxes.

compactionFrictionDeg(=sphereFrictionDeg)
Friction angle [°] of spheres during compaction (different values result in different porosities)].
This value is overridden by TriaxialTest::sphereFrictionDeg before triaxial testing.
dampingForce (=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of forces)

dampingMomentum(=0.2)
Coefficient of Cundal-Non-Viscous damping (applied on on the 3 components of torques)

defaultDt(=-1)
Max time-step. Used as initial value if defined. Latter adjusted by the time stepper.

density (=2600)
density of spheres

facetWalls (=false)
Use facets for boundaries (not tested)

finalMaxMultiplier(=1.001)
max multiplier of diameters during internal compaction (secondary precise adjustment)

fixedBoxDims (="%)
string that contains some subset (max. 2) of {‘x’,’y’,’z’} ; contains axes will have box dimension
hardcoded, even if box is scaled as mean_ radius is prescribed: scaling will be applied on the
rest.

importFilename (="%)
File with positions and sizes of spheres.

internalCompaction (=false)
flag for choosing between moving boundaries or increasing particles sizes during the com-
paction stage.

lowerCorner (= Vector3r(0, 0, 0))
Lower corner of the box.

84

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

maxMultiplier(=1.01)
max multiplier of diameters during internal compaction (initial fast increase)

maxWallVelocity(=10)
max velocity of boundaries. Usually useless, but can help stabilizing the system in some cases.

noFiles (=false)
Do not create any files during run (.xml, .spheres, wall stress records)

number0fGrains (=/00)
Number of generated spheres.

radiusControlInterval (=10)
interval between size changes when growing spheres.

radiusMean(=-1)
Mean radius. If negative (default), autocomputed to as a function of box size and Triaxial-
Test::numberOfGrains

radiusStdDev(=0.3)
Normalized standard deviation of generated sizes.

recordIntervallter (=20)
interval between file outputs

sigmaIsoCompaction(=50000)
Confining stress during isotropic compaction.

sigmalateralConfinement (=50000)
Lateral stress during triaxial loading. An isotropic unloading is performed if the value is not
equal to TriaxialTest::sigmalsoCompaction.

sphereFrictionDeg(=18.0)
Friction angle [°] of spheres assigned just before triaxial testing.

sphereKsDivKn(=0.5)
Ratio of shear vs. normal contact stiffness for spheres.

sphereYoungModulus (=15000000.0)
Stiffness of spheres.

strainRate(=0.1)
Strain rate in triaxial loading.

thickness (=0.001)
thickness of boundaries. It is arbitrary and should have no effect

timeStepUpdateInterval (=50)
interval for GlobalStiffnessTimeStepper

upperCorner (=Vector3r(1, 1, 1))
Upper corner of the box.

wallOversizeFactor(=1.%)
Make boundaries larger than the packing to make sure spheres don’t go out during deforma-
tion.

wallStiffnessUpdateInterval (=10)
interval for updating the stiffness of sample/boundaries contacts

wallWalls (=false)
Use walls for boundaries (not tested)

1.10. Preprocessors 85

Yade Reference Documentation, Release 1st edition

1.11 Rendering

1.11.1 OpenGLRenderer

class yade.wrapper.OpenGLRenderer (inherits Serializable)

Class responsible for rendering scene on OpenGL devices.

bgColor (=Vector3r(.2, .2, .2))
Color of the background canvas (RGB)

bound (=false)
Render body Bound

clipPlaneActive (=vector<bool>(numClipPlanes, false))
Activate/deactivate respective clipping planes

clipPlaneSe3 (=vector<Se3r>(numClipPlanes, Sedr(Vector8r::Zero(), Quater-

nionr::Identity())))
Position and orientation of clipping planes

dispScale(=Vector3r::Ones(), disable scaling)
Artificially enlarge (scale) dispalcements from bodies’ reference positions by this relative
amount, so that they become better visible (independently in 3 dimensions). Disbled if (1,1,1).

dof (=false)
Show which degrees of freedom are blocked for each body

extraDrawers (=uninitalized)
Additional rendering components (GlExtraDrawer).

ghosts (=true)
Render objects crossing periodic cell edges by cloning them in multiple places (periodic sim-
ulations only).
id(=false)
Show body id’s
intrAllWire (=false)
Draw wire for all interactions, blue for potential and green for real ones (mostly for debugging)

intrGeom(=false)
Render Interaction::geom objects.

intrPhys (=false)
Render Interaction::phys objects
intrWire (=false)

If rendering interactions, use only wires to represent them.

light1(=true)
Turn light 1 on.

light2(=true)
Turn light 2 on.

light2Color (=Vector3r(0.5, 0.5, 0.1))
Per-color intensity of secondary light (RGB).

light2Pos (=Vector3r(-130, 75, 30))
Position of secondary OpenGL light source in the scene.

lightColor (= Vector3r(0.6, 0.6, 0.6))

Per-color intensity of primary light (RGB).
lightPos (=Vector3r(75, 150, 0))

Position of OpenGL light source in the scene.

mask (=~0, draw everything)
Bitmask for showing only bodies where ((mask & Body::mask)!=0)

86

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

render () — None
Render the scene in the current OpenGL context.

rotScale(=1., disable scaling)
Artificially enlarge (scale) rotations of bodies relative to their reference orientation, so the
they are better visible.

selld(=Body::ID_NONE)
Id of particle that was selected by the user.

setRefSe3() — None
Make current positions and orientation reference for scaleDisplacements and scaleRotations.

shape (=true)
Render body Shape

wire (=false)
Render all bodies with wire only (faster)

1.11.2 GIShapeFunctor

Gl1_Sphere

Gll_Tetra

GI1_Wall

GlIShapeFunctor

Gl1_Facet

Gl1_Box

Gl1_Cylinder |« Gl1_ChainedCylinder

class yade.wrapper.GlShapeFunctor (inherits Functor — Serializable)
Abstract functor for rendering Shape objects.

class yade.wrapper.Gl1_Box (inherits GlShapeFunctor — Functor — Serializable)
Renders Box object

class yade.wrapper.Gl1l_ChainedCylinder (inherits GII__Cylinder — GlShapeFunctor — Func-
tor — Serializable)
Renders ChainedCylinder object including a shift for compensating flexion.

class yade.wrapper.Gl1l_Cylinder (inherits GIShapeFunctor — Functor — Serializable)
Renders Cylinder object
wire(=false [static])
Only show wireframe (controlled by glutSlices and glutStacks.
glutNormalize (=true [static])
Fix normals for non-wire rendering
glutSlices (=8 [static])
Number of sphere slices.

1.11. Rendering 87

Yade Reference Documentation, Release 1st edition

glutStacks(=/ [static])
Number of sphere stacks.

class yade.wrapper.Gll_Facet (inherits GlShapeFunctor — Functor — Serializable)
Renders Facet object

normals (=false [static])
In wire mode, render normals of facets and edges; facet’s colors are disregarded in that case.

class yade.wrapper.Gl1l_Sphere (inherits GlShapeFunctor — Functor — Serializable)
Renders Sphere object

quality(=1.0 [static])
Change discretization level of spheres. quality>1 for better image quality, at the price
of more cpu/gpu usage, 0<quality<1 for faster rendering. If mono-color sphres are dis-
played (Gl1_Sphere::stripes=False), quality mutiplies :yref:‘Gll_Sphere::glutSlices and GI1_ -
Sphere::glutStacks. If striped spheres are displayed (:yref:*Gl1l_ Sphere::stripes=True), only
integer increments are meaningfull : quality=1 and quality=1.9 will give the same result,
quality=2 will give finer result.

wire(=false [static])

Only show wireframe (controlled by glutSlices and glutStacks.
stripes (=false [static])

In non-wire rendering, show stripes clearly showing particle rotation.

localSpecView(=true [static])
Compute specular light in local eye coordinate system.

glutSlices(=12 [static])
Base number of sphere slices, multiplied by Gl1 Sphere::quality before use); not used with
stripes (see glut{Solid,Wire}Sphere reference)

glutStacks (=6 [static])
Base number of sphere stacks, multiplied by Gl1_Sphere::quality before use; not used with
stripes (see glut{Solid,Wire}Sphere reference)

class yade.wrapper.Gl1l_Tetra(inherits GlShapeFunctor — Functor — Serializable)
Renders Tetra object

class yade.wrapper.Gll_Wall(inherits GlShapeFunctor — Functor — Serializable)
Renders Wall object

div (=20 [static])
Number of divisions of the wall inside visible scene part.

1.11.3 GIStateFunctor

class yade.wrapper.GlStateFunctor (inherits Functor — Serializable)
Abstract functor for rendering State objects.

1.11.4 GIBoundFunctor

GIBoundFunctor (= Gl1_Aabb

class yade.wrapper.GlBoundFunctor (inherits Functor — Serializable)
Abstract functor for rendering Bound objects.

class yade.wrapper.Gl1_Aabb(inherits GlBoundFunctor — Functor — Serializable)
Render Axis-aligned bounding box (Aabb).

88 Chapter 1. Class reference (yade.wrapper module)

http://www.opengl.org/documentation/specs/glut/spec3/node81.html
http://www.opengl.org/documentation/specs/glut/spec3/node81.html

Yade Reference Documentation, Release 1st edition

1.11.5 GlIIGeomFunctor

Gl1_L3Geom Gl1_L6Geom

Gl1_Dem3DofGeom_SphereSphere

GliIiGeomFunctor

Gl1_Dem3DofGeom_FacetSphere

Gl1_Dem3DofGeom_WallSphere

class yade.wrapper.GlIGeomFunctor (inherits Functor — Serializable)
Abstract functor for rendering IGeom objects.

class yade.wrapper.Gl1l_Dem3DofGeom_FacetSphere (inherits GlUGeomFunctor — Functor —
Serializable)
Render interaction of facet and sphere (represented by Dem3DofGeom_ FacetSphere)

normal (=false [static])
Render interaction normal

rolledPoints(=false [static])
Render points rolled on the sphere & facet (original contact point)

unrolledPoints (=false [static])
Render original contact points unrolled to the contact plane

shear (=false [static])
Render shear line in the contact plane

shearLabel (=false [static])
Render shear magnitude as number

class yade.wrapper.Gl1l_Dem3DofGeom_SphereSphere (inherits Gl GeomFunctor — Functor —
Serializable)
Render interaction of 2 spheres (represented by Dem3DofGeom_ SphereSphere)

normal (=false [static])
Render interaction normal

rolledPoints(=false [static])
Render points rolled on the spheres (tracks the original contact point)

unrolledPoints (=false [static])
Render original contact points unrolled to the contact plane

shear (=false [static])
Render shear line in the contact plane

shearLabel (=false [static])
Render shear magnitude as number

class yade.wrapper.Gll_Dem3DofGeom_WallSphere (inherits GIIGeomFunctor — Functor — Se-
rializable)
Render interaction of wall and sphere (represented by Dem3DofGeom_ WallSphere)
normal (=false [static])
Render interaction normal

rolledPoints(=false [static])
Render points rolled on the spheres (tracks the original contact point)

1.11. Rendering 89

Yade Reference Documentation, Release 1st edition

unrolledPoints (=false [static])
Render original contact points unrolled to the contact plane

shear (=false [static])
Render shear line in the contact plane

shearLabel (=false [static])
Render shear magnitude as number

class yade.wrapper.Gl1l_L3Geom(inherits GIIGeomFunctor — Functor — Serializable)
Render L3Geom geometry.

axesLabels (=false [static])
Whether to display labels for local axes (x,y,z)

axesScale(=1. [static])
Scale local axes, their reference length being half of the minimum radius.

axesWd(=1. [static])
Width of axes lines, in pixels; not drawn if non-positive

uPhiWd(=2. [static])
Width of lines for drawing displacements (and rotations for L6Geom); not drawn if non-
positive.

uScale(=1. [static])
Scale local displacements (u - u0); 1 means the true scale, 0 disables drawing local displace-
ments; negative values are permissible.

class yade.wrapper.Gl1l_L6Geom(inherits Gl1_L3Geom — GlIGeomFunctor — Functor — Seri-
alizable)
Render L6Geom geometry.
phiScale(=1. [static])
Scale local rotations (phi - phi0). The default scale is to draw 7t rotation with length equal
to minimum radius.

1.11.6 GlIPhysFunctor

GIl1_CpmPhys

GlIPhys Functor

GIl1_NormPhys

class yade.wrapper.GlIPhysFunctor (inherits Functor — Serializable)
Abstract functor for rendering [Phys objects.

class yade.wrapper.Gll_CpmPhys (inherits GIIPhysFunctor — Functor — Serializable)
Render CpmPhys objects of interactions.

contactLine (=true [static])
Show contact line

dmgLabel (=true [static])
Numerically show contact damage parameter

dmgPlane (=false [static])
[what is this?]

epsT(=false [static])
Show shear strain

epsTAxes (=false [static])
Show axes of shear plane

90 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

normal (=false [static])
Show contact normal

colorStrainRatio(=-1 [static])
If positive, set the interaction (wire) color based on en normalized by €9 X colorStrainRatio
(eo=:yref: CpmPhys.epsCrackOnset). Otherwise, color based on the residual strength.

epsNLabel (=false [static])
Numerically show normal strain

class yade.wrapper.Gll_NormPhys (inherits GUPhysFunctor — Functor — Serializable)
Renders NormPhys objects as cylinders of which diameter and color depends on Norm-
Phys:normForce magnitude.
maxFn (=0 [static])
Value of NormPhys.normalForce corresponding to maxDiameter. This value will be increased
(but not decreased) automatically.

signFilter (=0 [static])
If non-zero, only display contacts with negative (-1) or positive (+1) normal forces; if zero,
all contacts will be displayed.

refRadius (=std::numeric_limits<Real>::infinity() [static])
Reference (minimum) particle radius; used only if maxRadius is negative. This value will be
decreased (but not increased) automatically. (auto-updated)
maxRadius(=-7 [static])
Cylinder radius corresponding to the maximum normal force. If negative, auto-updated re-
fRadius will be used instead.
slices (=6 [static])
Number of sphere slices; (see glutCylinder reference)
stacks (=1 [static])
Number of sphere stacks; (see glutCylinder reference)
maxWeakFn(=NaN [static])
Value that divides contacts by their normal force into the ‘“‘weak fabric” and ‘‘strong fabric’
This value is set as side-effect by utils.fabricTensor.
weakFilter (=0 [static])
If non-zero, only display contacts belonging to the ‘““weak” (-1) or “‘strong” (+1) fabric.
weakScale(=1. [static])

If maxWeakFn is set, scale radius of the weak fabric by this amount (usually smaller than 1).
If zero, 1 pixel line is displayed. Colors are not affected by this value.

1.12 Simulation data

1.12.1 Omega

class yade.wrapper.Omega

bodies
Bodies in the current simulation (container supporting index access by id and iteration)

cell
Periodic cell of the current scene (None if the scene is aperiodic).

childClassesNonrecursive ((sir)arg2) — list
Return list of all classes deriving from given class, as registered in the class factory

disableGdb() — None
Revert SEGV and ABRT handlers to system defaults.

1.12. Simulation data 91

http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml
http://www.opengl.org/sdk/docs/man/xhtml/gluCylinder.xml

Yade Reference Documentation, Release 1st edition

dt
Current timestep (At) value.

« assigning negative value enables dynamic At (by looking for a TimeStepper in O.engine)
and sets positive timestep 0.dt=|At| (will be used until the timestepper is run and
updates it)

« assigning positive value sets At to that value and disables dynamic At (via TimeStepper,
if there is one).

dynDt can be used to query whether dynamic At is in use.
dynDt
Whether a TimeStepper is used for dynamic At control. See dt on how to enable/disable
TimeStepper.
dynDtAvailable
Whether a TimeStepper is amongst O.engines, activated or not.
energy
EnergyTracker of the current simulation. (meaningful only with O.trackEnergy)
engines

List of engines in the simulation (Scene::engines).

exitNoBacktrace([(z’nt)status:O]) — None
Disable SEGV handler and exit, optionally with given status number.

filename
Filename under which the current simulation was saved (None if never saved).

forceSyncCount
Counter for number of syncs in ForceContainer, for profiling purposes.

forces
ForceContainer (forces, torques, displacements) in the current simulation.

interactions
Interactions in the current simulation (container supporting index acces by either (id1,id2) or
interactionNumber and iteration)

isChildClass0f ((str)arg2, (str)arg3) — bool
Tells whether the first class derives from the second one (both given as strings).
iter
Get current step number
labeledEngine ((str)arg2) — object
Return instance of engine/functor with the given label. This function shouldn’t be called

by the user directly; every ehange in O.engines will assign respective global python variables
according to labels.

For example:: O.engines=[InsertionSortCollider(label="collider’)] collider.nBins=5 ## col-
lider has become a variable after assignment to O.engines automatically)

load((str)ﬁle[, (bool)quz'et:False]) — None
Load simulation from file.

loadTmp([(str)mark:”[, (bool)quiet:False]]) — None
Load simulation previously stored in memory by saveTmp. mark optionally distinguishes
multiple saved simulations

1sTmp (O — list
Return list of all memory-saved simulations.

materials
Shared materials; they can be accessed by id or by label

92

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

miscParams
MiscParams in the simulation (Scene::mistParams), usually used to save serializables that
don’t fit anywhere else, like GL functors

numThreads
Get maximum number of threads openMP can use.

pause() — None
Stop simulation execution. (May be called from within the loop, and it will stop after the
current step).

periodic
Get/set whether the scene is periodic or not (True/False).

plugins() — list
Return list of all plugins registered in the class factory.

realtime
Return clock (human world) time the simulation has been running.

reload([(bool)quiet:False]) — None
Reload current simulation

reset () — None
Reset simulations completely (including another scene!).

resetThisScene() — None
Reset current scene.

resetTime() — None
Reset simulation time: step number, virtual and real time. (Doesn’t touch anything else,
including timings).

run([(int)nSteps:—l[, (bool)wait:False]]) — None
Run the simulation. nSteps how many steps to run, then stop (if positive); wait will cause
not returning to python until simulation will have stopped.

runEngine ((Engine)arg2) — None
Run given engine exactly once; simulation time, step number etc. will not be incremented
(use only if you know what you do).

running
Whether background thread is currently running a simulation.

save((str)ﬁle[, (bool)quz'et:False]) — None
Save current simulation to file (should be .xml or .xml.bz2)

saveTmp([(str)mark:“[, (bool)quiet:False]]) — None
Save simulation to memory (disappears at shutdown), can be loaded later with loadTmp.
mark optionally distinguishes different memory-saved simulations.

step() — None
Advance the simulation by one step. Returns after the step will have finished.

stopAtIter
Get/set number of iteration after which the simulation will stop.

subStep
Get the current subStep number (only meaningful if O.subStepping==True); -1 when out-
side the loop, otherwise either 0 (O.subStepping==False) or number of engine to be run
(O.subStepping==True)

subStepping
Get/set whether subStepping is active.

switchScene() — None
Switch to alternative simulation (while keeping the old one). Calling the function again
switches back to the first one. Note that most variables from the first simulation will still

1.12. Simulation data 93

Yade Reference Documentation, Release 1st edition

refer to the first simulation even after the switch (e.g. b=0.bodies[4]; O.switchScene(); [b still
refers to the body in the first simulation here])

tags
Tags (string=string dictionary) of the current simulation (container supporting string-index
access/assignment)

time
Return virtual (model world) time of the simulation.

timingEnabled
Globally enable/disable timing services (see documentation of the timing module).

tmpFilename () — str
Return unique name of file in temporary directory which will be deleted when yade exits.

tmpToFile((str)ﬁleName[, (str)mark:"]) — None
Save XML of saveTmp‘d simulation into fileName.

tmpToString([(str)mark:"]) — str
Return XML of saveTmp‘d simulation as string.

trackEnergy
When energy tracking is enabled or disabled in this simulation.

wait() — None
Don’t return until the simulation will have been paused. (Returns immediately if not running).

1.12.2 BodyContainer

class yade.wrapper.BodyContainer

__init__((BodyContainer)arg2) — None
append ((Body)arg2) — int
Append one Body instance, return its id.

append((BodyContainer)argl, (object)arg2) — object : Append list of Body in-
stance, return list of ids

appendClumped ((object)arg2) — tuple
Append given list of bodies as a clump (rigid aggregate); return list of ids.

clear() — None
Remove all bodies (interactions not checked)

clump ((object)arg2) — int
Clump given bodies together (creating a rigid aggregate); returns clump id.

erase ((int)arg2) — bool
Erase body with the given id; all interaction will be deleted by InteractionLoop in the next
step.

replace ((object)arg2) — object

1.12.3 InteractionContainer
class yade.wrapper.InteractionContainer
Access to interactions of simulation, by using
1.id’s of both Bodies of the interactions, e.g. 0.interactions[23,65]

2.iteraction over the whole container:

94 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

for i in O.interactions: print i.id1,i.id2

Note: TIteration silently skips interactions that are not real.

__init__((InteractionContainer)arg2) — None

clear() — None
Remove all interactions

countReal() — int
Return number of interactions that are “real”, i.e. they have phys and geom.

erase((int)arg?2, (int)arg3) — None
Erase one interaction, given by id1, id2 (internally, requestErase is called — the interaction
might still exist as potential, if the Collider decides so).

eraseNonReal() — None
Erase all interactions that are not real .

nth((int)arg2) — Interaction
Return n-th interaction from the container (usable for picking random interaction).

serializeSorted

withBody ((int)arg2) — list
Return list of real interactions of given body.

withBodyAll((int)arg2) — list
Return list of all (real as well as non-real) interactions of given body.

1.12.4 ForceContainer

class yade.wrapper.ForceContainer

__init__((ForceContainer)arg2) — None

addF ((int)id, (Vector3)f) — None
Apply force on body (accumulates).

addMove ((int)id, (Vector3)m) — None
Apply displacement on body (accumulates).

addRot ((int)id, (Vector3)r) — None
Apply rotation on body (accumulates).

addT ((int)id, (Vector3)t) — None
Apply torque on body (accumulates).

£ ((int)id) — Vector3
Force applied on body.

m((int)id) — Vector3
Deprecated alias for t (torque).

move ((int)id) — Vector3
Displacement applied on body.

rot ((int)id) — Vector3
Rotation applied on body.

syncCount
Number of synchronizations of ForceContainer (cummulative); if significantly higher than
number of steps, there might be unnecessary syncs hurting performance.

t ((int)id) — Vector3
Torque applied on body.

1.12. Simulation data 95

Yade Reference Documentation, Release 1st edition

1.12.5 MaterialContainer

class yade.wrapper.MaterialContainer

Container for Materials. A material can be accessed using
1.numerical index in range(0,len(cont)), like cont[2];

2.textual label that was given to the material, like cont[’steel’]. This etails traversing all mate-
rials and should not be used frequently.

__init__((MaterialContainer)arg2) — None
append ((Material)arg2) — int
Add new shared Material; changes its id and return it.

append((MaterialContainer)argl, (object)arg2) — object : Append list of Material
instances, return list of ids.

index((str)arg2) — int
Return id of material, given its label.

1.12.6 Scene

class yade.wrapper.Scene (inherits Serializable)

Object comprising the whole simulation.

compressionNegative
Whether the convention is that compression has negative sign (set by Ig2Functor.

dt(=1e-8)
Current timestep for integration.

flags(=0)
Various flags of the scene; 1 (Scene::LOCAL_COORDS): use local coordinate system rather
than global one for per-interaction quantities (set automatically from the functor).

isPeriodic(=false)

Whether periodic boundary conditions are active.
iter(=0)

Current iteration (computational step) number

localCoords
Whether local coordianate system is used on interactions (set by Ig2Functor.

selectedBody (=-1)
Id of body that is selected by the user

stopAtIter(=0)
Iteration after which to stop the simulation.

subStep(=-1)
Number of sub-step; not to be changed directly. -1 means to run loop prologue (cell integra-
tion), 0..n-1 runs respective engines (n is number of engines), n runs epilogue (increment step
number and time.

subStepping (=false)
Whether we currently advance by one engine in every step (rather than by single run through
all engines).

tags (=uninitalized)

Arbitrary key=value associations (tags like mp3 tags: author, date, version, description etc.)
time (=0)

Simulation time (virtual time) [s]

96

Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

trackEnergy (=false)
Whether energies are being traced.

1.12.7 Cell

class yade.wrapper.Cell (inherits Serializable)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.

hSize
Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported
by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

hSize0
Value of untransformed hSize, with respect to current trsf (computed as trsf<Cell.trsf>‘ 1 x
:yref:‘hSize.

homoDeform(=3)
Deform (velGrad) the cell homothetically, by adjusting positions or velocities of particles. The
values have the following meaning: 0: no homothetic deformation, 1: set absolute particle
positions directly (when velGrad is non-zero), but without changing their velocity, 2: adjust
particle velocity (only when velGrad changed) with Av_i=A v x_i. 3: as 2, but include a
2nd order term in addition — the derivative of 1 (convective term in the velocity update).

prevVelGrad (=Matriz3r::Zero())
Velocity gradient in the previous step.

refHSize (=Matrizdr::Identity())
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-
cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the :gui:*Reference‘ button in the UI).

refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).

Note: Modifying this value is deprecated, use setBox instead.

setBox ((Vector3)arg2) — None

Set Cell shape to be rectangular, with dimensions along axes specified by given ar-
gument. Shorthand for assigning diagonal matrix with respective entries to hSize.

setBox((Cell)argl, (float)arg2, (float)arg3, (float)argd) — None : Set Cell shape to
be rectangular, with dimensions along x, y, z specified by arguments. Shorthand for
assigning diagonal matrix with the respective entries to hSize.

shearPt ((Vector8)arg2) — Vector3
Apply shear (cell skew+rot) on the point

shearTrsf
Current skew-rot transformation (no resize)

size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
Updated automatically at every step.

trsf
Current transformation matrix of the cell, obtained from time integration of Cell.velGrad.

unshearPt ((Vector3)arg2) — Vector3
Apply inverse shear on the point (removes skew-+rot of the cell)

1.12. Simulation data 97

Yade Reference Documentation, Release 1st edition

unshearTrsf
Inverse of the current skew+rot transformation (no resize)

velGrad (=Matriz3r::Zero())
Velocity gradient of the transformation; used in NewtonIntegrator. Values of velGrad accu-
mulate in trsf at every step.

volume
Current volume of the cell.

wrap ((Vector3)arg2) — Vector3
Transform an arbitrary point into a point in the reference cell

wrapPt ((Vector3)arg2) — Vector3
Wrap point inside the reference cell, assuming the cell has no skew+rot.

1.13 Other classes

class yade.wrapper.Engine (inherits Serializable)
Basic execution unit of simulation, called from the simulation loop (O.engines)

dead (=false)
If true, this engine will not run at all; can be used for making an engine temporarily deactivated
and only resurrect it at a later point.

execCount
Cummulative count this engine was run (only used if O.timingEnabled==True).

execTime
Cummulative time this Engine took to run (only used if O.timingEnabled==True).

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly from
python.

timingDeltas
Detailed information about timing inside the Engine itself. Empty unless enabled in the source
code and O.timingEnabled==True.

class yade.wrapper.Cell (inherits Serializable)
Parameters of periodic boundary conditions. Only applies if O.isPeriodic==True.

hSize
Base cell vectors (columns of the matrix), updated at every step from velGrad (trsf accumu-
lates applied velGrad transformations). Setting hSize during a simulation is not supported
by most contact laws, it is only meant to be used at iteration 0 before any interactions have
been created.

hSize0
Value of untransformed hSize, with respect to current trsf (computed as trsf<Cell.trsf>‘ 1 x
:yref:‘hSize.

homoDeform(=3)
Deform (velGrad) the cell homothetically, by adjusting positions or velocities of particles. The
values have the following meaning: 0: no homothetic deformation, 1: set absolute particle
positions directly (when velGrad is non-zero), but without changing their velocity, 2: adjust
particle velocity (only when velGrad changed) with Av_i=A v x_i. 3: as 2, but include a
2nd order term in addition — the derivative of 1 (convective term in the velocity update).

prevVelGrad (=Matriz3r::Zero())
Velocity gradient in the previous step.

refHSize (=Matriz3r::Identity())
Reference cell configuration, only used with OpenGLRenderer.dispScale. Updated automati-

98 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

cally when hSize or trsf is assigned directly; also modified by utils.setRefSe3 (called e.g. by
the :gui:‘Reference‘ button in the UI).

refSize
Reference size of the cell (lengths of initial cell vectors, i.e. column norms of hSize).

Note: Modifying this value is deprecated, use setBox instead.

setBox ((Vector3)arg2) — None

Set Cell shape to be rectangular, with dimensions along axes specified by given ar-
gument. Shorthand for assigning diagonal matrix with respective entries to hSize.

setBox((Cell)argl, (float)arg2, (float)arg3, (float)arg4) — None : Set Cell shape to
be rectangular, with dimensions along x, y, z specified by arguments. Shorthand for
assigning diagonal matrix with the respective entries to hSize.

shearPt ((Vector8)arg2) — Vector3
Apply shear (cell skew+rot) on the point

shearTrsf
Current skew-rot transformation (no resize)

size
Current size of the cell, i.e. lengths of the 3 cell lateral vectors contained in Cell.hSize columns.
Updated automatically at every step.

trst
Current transformation matrix of the cell, obtained from time integration of Cell.velGrad.

unshearPt ((Vector3)arg2) — Vector3
Apply inverse shear on the point (removes skew—+rot of the cell)

unshearTrsf
Inverse of the current skew+rot transformation (no resize)

velGrad (=Matriz3r::Zero())
Velocity gradient of the transformation; used in NewtonlIntegrator. Values of velGrad accu-
mulate in trsf at every step.

volume
Current volume of the cell.

wrap ((Vector3)arg2) — Vector3
Transform an arbitrary point into a point in the reference cell

wrapPt ((Vector3)arg2) — Vector3
Wrap point inside the reference cell, assuming the cell has no skew—+rot.

class yade.wrapper.TimingDeltas

data
Get timing data as list of tuples (label, execTime[nsec]|, execCount) (one tuple per checkpoint)

reset () — None
Reset timing information

class yade.wrapper.GlExtraDrawer (inherits Serializable)
Performing arbitrary OpenGL drawing commands; called from OpenGLRenderer (see OpenGLRen-
derer.extraDrawers) once regular rendering routines will have finished.

This class itself does not render anything, derived classes should override the render method.

dead (=false)
Deactivate the object (on error/exception).

1.13. Other classes 99

Yade Reference Documentation, Release 1st edition

class yade.wrapper.GlIGeomDispatcher (inherits Dispatcher — Engine — Serializable)
Dispatcher calling functors based on received argument type(s).

dispFunctor ((IGeom)arg2) — GlIGeomFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)nameS:True]) — dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

class yade.wrapper.ParallelEngine (inherits Engine — Serializable)
Engine for running other Engine in parallel.

__init__() — None
object ___init___ (tuple args, dict kwds)

init___ ((list)arg2) — object : Construct from (possibly nested) list of slaves.

slaves
List of lists of Engines; each top-level group will be run in parallel with other groups, while
Engines inside each group will be run sequentially, in given order.

class yade.wrapper.GlShapeDispatcher (inherits Dispatcher — Engine — Serializable)
Dispatcher calling functors based on received argument type(s).

dispFunctor ((Shape)arg2) — GlShapeFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names:True]) — dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

class yade.wrapper.Functor (inherits Serializable)
Function-like object that is called by Dispatcher, if types of arguments match those the Functor
declares to accept.

bases
Ordered list of types (as strings) this functor accepts.

label (=uninitalized)
Textual label for this object; must be valid python identifier, you can refer to it directly fron
python (must be a valid python identifier).

timingDeltas
Detailed information about timing inside the Dispatcher itself. Empty unless enabled in the
source code and O.timingEnabled==True.

class yade.wrapper.Serializable

dict() — dict
Return dictionary of attributes.

updateAttrs ((dict)arg2) — None
Update object attributes from given dictionary

class yade.wrapper.GlExtra_LawTester (inherits GlEztraDrawer — Serializable)
Find an instance of LawTester and show visually its data.

tester (=uninitalized)
Associated LawTester object.

class yade.wrapper.GlStateDispatcher (inherits Dispatcher — Engine — Serializable)
Dispatcher calling functors based on received argument type(s).

100 Chapter 1. Class reference (yade.wrapper module)

Yade Reference Documentation, Release 1st edition

dispFunctor ((State)arg2) — GlStateFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)nameS:True]) — dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

class yade.wrapper.MatchMaker (inherits Serializable)
Class matching pair of ids to return pre-defined (for a pair of ids defined in matches) or derived
value (computed using algo) of a scalar parameter. It can be called (id1, id2, val1=NaN, val2=NaN)
in both python and c++.

Note: There is a converter from python number defined for this class, which creates a new
MatchMaker returning the value of that number; instead of giving the object instance therefore,
you can only pass the number value and it will be converted automatically.

algo
Alogorithm used to compute value when no match for ids is found. Possible values are

o ‘avg’ (arithmetic average)
o ‘min’ (minimum value)
e ‘max’ (maximum value)
o ‘harmAvg’ (harmonic average)
The following algo algorithms do not require meaningful input values in order to work:
o ‘val’ (return value specified by val)

o ‘zero’ (always return 0.)

computeFallback ((float)vall, (float)val2) — float
Compute algo value for vall and val2, using algorithm specified by algo.

matches (=uninitalized)
Array of (id1,id2,value) items; queries matching id1 + id2 or id2 + id1 will return value

val(=NaN)
Constant value returned if there is no match and algo is val

class yade.wrapper.GlBoundDispatcher (inherits Dispatcher — Engine — Serializable)
Dispatcher calling functors based on received argument type(s).

dispFunctor ((Bound)arg2) — GlBoundFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names:True]) — dict
Return dictionary with contents of the dispatch matrix.

functors
Functors associated with this dispatcher.

class yade.wrapper.GlIPhysDispatcher (inherits Dispatcher — Engine — Serializable)
Dispatcher calling functors based on received argument type(s).

dispFunctor ((IPhys)arg2) — GlIPhysFunctor
Return functor that would be dispatched for given argument(s); None if no dispatch; ambigu-
ous dispatch throws.

dispMatrix([(bool)names:True]) — dict
Return dictionary with contents of the dispatch matrix.

1.13. Other classes 101

Yade Reference Documentation, Release 1st edition

functors
Functors associated with this dispatcher.

class yade.wrapper.GlExtra_OctreeCubes (inherits GlExtraDrawer — Serializable)
Render boxed read from file

boxesFile (=uninitalized)
File to read boxes from; ascii files with x0 yO z0 x1 y1 z1 c records, where c is an integer
specifying fill (0 for wire, 1 for filled).

fillRangeDraw (= Vector2i(-2, 2))
Range of fill indices that will be rendered.

fillRangeFill(=Vector2i(2, 2))
Range of fill indices that will be filled.

levelRangeDraw (= Vector2i(-2, 2))
Range of levels that will be rendered.

noFillZero (=true)
Do not fill 0-fill boxed (those that are further subdivided)

class yade.wrapper.Dispatcher (inherits Engine — Serializable)
Engine dispatching control to its associated functors, based on types of argument it receives. This
abstract base class provides no functionality in itself.

class yade.wrapper.EnergyTracker (inherits Serializable)
Storage for tracing energies. Only to be used if O.traceEnergy is True.

clear() — None
Clear all stored values.

energies (=uninitalized)
Energy values, in linear array

items() — list
Return contents as list of (name,value) tuples.

keys () — list
Return defined energies.

total() — float
Return sum of all energies.

102 Chapter 1. Class reference (yade.wrapper module)

Chapter 2

Yade modules

2.1 yade.eudoxos module

Miscillaneous functions that are not believed to be generally usable, therefore kept in my “private”
module here.

They comprise notably oofem export and various CPM-related functions.

class yade.eudoxos.IntrSmooth3d
Return spatially weigted gaussian average of arbitrary quantity defined on interactions.

At construction time, all real interactions are put inside spatial grid, permitting fast search for
points in neighbourhood defined by distance.

Parameters for the distribution are standard deviation o and relative cutoff distance relThreshold
(3 by default) which will discard points farther than relThreshold xo.

Given central point po, points are weighted by gaussian function
o —[lpo —plI?
p(pO)p) - 0_\/277_[eXp < 20_2

To get the averaged value, simply call the instance, passing central point and callable object which
received interaction object and returns the desired quantity:

>>> 0.reset()

>>> from yade import utils

>>> 0.bodies.append([utils.sphere((0,0,0),1),utils.sphere((0,0,1.9),1)])

[o, 1]

>>> 0.engines=[InteractionLoop([Ig2_Sphere_Sphere_Dem3DofGeom(),], [Ip2_FrictMat_FrictMat_FrictPhys()]
>>> utils.createInteraction(0,1)

<Interaction instance at Ox...>

>> is3d=IntrSmooth3d(0.003) >> is3d((0,0,0),Jambda i: i.phys.normalForce) Vec-
tor3(0,0,0)

bounds ()

count ()
yade.eudoxos.displacementsInteractionsExport (fName)
yade.eudoxos.eliminateJumps (eps, sigma, numSteep=10, gap Width=5, movWd=40)

yade.eudoxos . estimatePoissonYoung (principalAxis, stress=0, plot=Fulse, cutoff=0.0)
Estimate Poisson’s ration given the “principal” axis of straining. For every base direction, homog-
enized strain is computed (slope in linear regression on discrete function particle coordinate — —
particle displacement in the same direction as returned by utils.coordsAndDisplacements) and, (if
axis ‘0’ is the strained axis) the poisson’s ratio is given as -%2(el+¢€2)/¢ .

Young’s modulus is computed as o/¢ ; if stress o is not given (default 0), the result is 0.

103

Yade Reference Documentation, Release 1st edition

cutoff, if > 0., will take only smaller part (centered) or the specimen into account

yade.eudoxos.estimateStress (strain, cutoff=0.0)
Use summed stored energy in contacts to compute macroscopic stress over the same volume, pro-
vided known strain.

yade.eudoxos.oofemDirectExport (fileBase, title=None, neglds:H , pos[ds:[])

yade.eudoxos.oofemPrescribedDisplacementsExport (fileName)

yade.eudoxos.oofemTextExport (fName)
Export simulation data in text format

The format is line-oriented as follows:

EG # elastic material parameters

epsCrackOnset relDuctility xiShear transStrainCoeff # tensile parameters; epsFr=epsCrackOnset*relDuctility
cohesionT tanPhi # shear parameters

number_of_spheres number_of_links

id x y z r boundary # spheres; boundary: -1 negative, O none, 1 positive
idl id2 cp_x cp_y cp_z A # interactions; cp = contact point; A = cross-section

yade.eudoxos.particleConfinement () — None

yade.eudoxos.velocityTowardsAxis ((Vector3)axisPoint, (Vector3)axisDirection,

(float)time ToA:m's[, (ﬂoat)subtmctDist[,
(ﬂoat)perturbation]]) — None

class yade._eudoxos.HelixInteractionLocator2d
Locate all real interactions in 2d plane (reduced by spiral projection from 3d, using
Shop: :spiralProject, which is the same as utils.spiralProject) using their contact points.

Note: Do not run simulation while using this object.

__init__((ﬂoat)dH_dTheta[, (int)axis:O[, (ﬂoat)periodStart:nan[, (ﬂoat)thetaO:O[,
(ﬂoat)thetaMin:nan[, (ﬂoat)thetaMax:nan]]]]]) — None

Parameters

dH__dTheta (float) — Spiral inclination, i.e. height increase per 1 radian turn;
axis (int) — axis of rotation (0=x,1=y,2=2)
theta (float) — spiral angle at zero height (theta intercept)

thetaMin (float) — only interactions with 9 thetaMin will be considered (NaN
to deactivate)

thetaMax (float) — only interactions with 9 thetaMax will be considered (NaN
to deactivate)

See utils.spiralProject.

hi

Return upper corner of the rectangle containing all interactions.

intrsAroundPt ((Vector2)pt2d, (float)radius) — list
Return list of interaction objects that are not further from pt2d than radius in the projection

plane

lo

Return lower corner of the rectangle containing all interactions.

macroAroundPt ((Vector2)pt2d, (float)radius) — tuple
Compute macroscopic stress around given point; the interaction (n and o' are rotated to

104

Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

the projection plane by ¥ (as given by utils.spiralProject) first, but no skew is applied). The
formula used is

1 1
01 =y Z dAl [GN’Un?njU + 5 (GIUTL)U + GjT’UniU)]
1y

where the sum is taken over volume V containing interactions 1] between spheres I and J;
1, j indices denote Cartesian components of vectors and tensors,
« dV is current distance between spheres I and J,
« AU is area of contact IJ,

e is (d-rotated) interaction normal (unit vector pointing from center of I to the center of

J)

« 0™ U is normal stress (as scalar) in contact IJ,
o 00U is shear stress in contact IJ in global coordinates and 9-rotated.

Additionally, computes average of CpmPhys.omega (@) and CpmPhys.kappaD (Kp). N is
the number of interactions in the volume given.
Returns tuple of (N, o, @, Kp).

class yade._eudoxos.InteractionLocator
Locate all (real) interactions in space by their contact point. When constructed, all real interactions
are spatially indexed (uses vtkPointLocator internally). Use instance methods to use those data.

Note: Data might become inconsistent with real simulation state if simulation is being run
between creation of this object and spatial queries.

bounds
Return coordinates of lower and uppoer corner of axis-aligned abounding box of all interactions

count
Number of interactions held

intrsAroundPt ((Vectors)point, (float)maxDist) — list
Return list of real interactions that are not further than maxzDist from point.

macroAroundPt ((Vector3)point, (ﬂoat)maxDist[, (ﬂoat}forceVolume:-Z]) — tuple
Return tuple of averaged stress tensor (as Matrix3), average omega and average kappa values.
forceVolume can be used (if positive) rather than the sphere (with mazDist radius) volume
for the computation. (This is useful if point and maxDist encompass empty space that you
want to avoid.)

yade._eudoxos.particleConfinement () — None

yade._eudoxos.velocityTowardsAxis ((Vector3)axisPoint, (Vector3)axisDirection,
(ﬂoat)timeToAmis[, (ﬂoat)subtmctDz’st[,
(ﬂoat)perturbation]]) — None

2.2 yade.export module

Export geometry to various formats.

class yade.export.VTKWriter

USAGE: create object vtk writer = VITKWriter(‘base_file_name’), add to engines PyRunner with
command="vtk_ writer.snapshot()’

snapshot ()

yade.export.text (filename, consider=<function <lambda> at 0x56f8c08>)

2.2. yade.export module 105

http://www.vtk.org/doc/release/5.4/html/a01247.html

Yade Reference Documentation, Release 1st edition

Save sphere coordinates into a text file; the format of the line is: x y z r. Non-
spherical bodies are silently skipped. Example added to examples/regular-sphere-
pack/regular-sphere-pack.py
Parameters

filename: string the name of the file, where sphere coordinates will be exported.
consider: anonymous function(optional)
Returns number of spheres which were written.

yade.export.textExt (filename, format="x_y_ z r’, consider=<function <lambda> at
0x56f8a28>, comment="°)

Save sphere coordinates and other parameters into a text file in specific format.
Non-spherical bodies are silently skipped. Users can add here their own specific format,
giving meaningful names. The first file row will contain the format name. Be sure to add the
same format specification in ymport.textExt.

parameters

filename: string the name of the file, where sphere coordinates will be exported.
format: the name of output format. Supported z_y 2z r‘(default), ‘c_y 2z r matld
comment: the text, which will be added as a comment at the top of file. If you want to
create several lines of text, please use
#¢ for next lines.

consider: anonymous function(optional)

Returns number of spheres which were written.

2.3 yade.linterpolation module

Module for rudimentary support of manipulation with piecewise-linear functions (which are usually
interpolations of higher-order functions, whence the module name). Interpolation is always given as two
lists of the same length, where the x-list must be increasing.

Periodicity is supported by supposing that the interpolation can wrap from the last x-value to the first
x-value (which should be 0 for meaningful results).

Non-periodic interpolation can be converted to periodic one by padding the interpolation with constant
head and tail using the sanitizelnterpolation function.

There is a c++ template function for interpolating on such sequences in
pkg/common/Engine/PartialEngine /LinearInterpolate.hpp (stateful, therefore fast for sequential
reads).

TODO: Interpolating from within python is not (yet) supported.

yade.linterpolation.integral(z, y)
Return integral of piecewise-linear function given by points x0,x1,... and y0,y1,...

yade.linterpolation.revIntegrateLinear (], z0, y0, 1, y1)
Helper function, returns value of integral variable x for linear function f passing through
(x0,y0),(x1,y1) such that 1. x [x0,x1] 2. _x0"x f dx=I and raise exception if such number doesn’t
exist or the solution is not unique (possible?)

yade.linterpolation.sanitizeInterpolation(z, y, 20, x1)
Extends piecewise-linear function in such way that it spans at least the x0...x1 interval, by adding
constant padding at the beginning (using y0) and/or at the end (using y1) or not at all.

106 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

yade.linterpolation.xFractionalFromIntegral (integral, z, y)
Return x within range x0..xn such that _x0"x f dx==integral. Raises error if the integral value
is not reached within the x-range.

yade.linterpolation.xFromIntegral (integralValue, z, y)
Return x such that _ x0"x f dx==integral. x wraps around at xn. For meaningful results, therefore,
x0 should == 0

2.4 yade.log module

Access and manipulation of logdcxx loggers.

yade.log.loadConfig((str)fileName) — None
Load configuration from file (logdcxx::PropertyConfigurator::configure)

yade.log.setLevel ((str)logger, (int)level) — None
Set minimum severity level (constants TRACE, DEBUG, INFO, WARN, ERROR, FATAL) for given logger.
Leading ‘yade.’ will be appended automatically to the logger name; if logger is ’, the root logger
‘yade’ will be operated on.

2.5 yade.pack module

Creating packings and filling volumes defined by boundary representation or constructive solid geometry.
For examples, see

e scripts/test/gts-horse.py

e scripts/test/gts-operators.py

e scripts/test/gts-random-pack-obb.py

o scripts/test/gts-random-pack.py

e scripts/test/pack-cloud.py

o scripts/test/pack-predicates.py

o examples/regular-sphere-pack /regular-sphere-pack.py

yade.pack.SpherePack_toSimulation(self, rot=Matriz3(1, 0, 0, 0, 1, 0, 0, 0, 1), **kw)
Append spheres directly to the simulation. In addition calling O.bodies.append, this method also
appropriately sets periodic cell information of the simulation.

>>> from yade import pack; from math import *
>>> sp=pack.SpherePack()

Create random periodic packing with 20 spheres:

>>> sp.makeCloud((0,0,0),(5,5,5) ,rMean=.5,rRelFuzz=.5,periodic=True,num=20)
20

Virgin simulation is aperiodic:

>>> 0.reset()
>>> 0.periodic
False

Add generated packing to the simulation, rotated by 45° along +z

>>> sp.toSimulation(rot=Quaternion((0,0,1),pi/4),color=(0,0,1))
[o, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Periodic properties are transferred to the simulation correctly, including rotation:

2.4. yade.log module 107

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/gts-horse.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/gts-operators.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/gts-random-pack-obb.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/gts-random-pack.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/pack-cloud.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/scripts/test/pack-predicates.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/regular-sphere-pack/regular-sphere-pack.py

Yade Reference Documentation, Release 1st edition

>>> 0.periodic

True

>>> 0.cell.refSize

Vector3(5,5,5)

>>> 0.cell.hSize

Matrix3(3.535563,-3.53553,0, 3.53553,3.53553,0, 0,0,5)

The current state (even if rotated) is taken as mechanically undeformed, i.e. with identity trans-
formation:

>>> 0.cell.trsf
Matrix3(1,0,0, 0,1,0, 0,0,1)

Parameters

e rot (Quaternion/Matriz3) — rotation of the packing, which will be applied on
spheres and will be used to set Cell.trsf as well.

o **kw — passed to utils.sphere

Returns list of body ids added (like O.bodies.append)

yade.pack.cloudBestFit0OBB((tuple)argl) — tuple
Return (Vector3 center, Vector3 halfSize, Quaternion orientation) of best-fit oriented bounding-box
for given tuple of points (uses brute-force velome minimization, do not use for very large clouds).

yade.pack.filterSpherePack (predicate, spherePack, returnSpherePack=None, **kw)
Using given SpherePack instance, return spheres the satisfy predicate. The packing will be recen-
tered to match the predicate and warning is given if the predicate is larger than the packing.

yade.pack.gtsSurface2Facets (surf, **kw)
Construct facets from given GTS surface. **kw is passed to utils.facet.

yade.pack.gtsSurfaceBestFit0BB (surf)
Return (Vector3 center, Vector3 halfSize, Quaternion orientation) describing best-fit oriented
bounding box (OBB) for the given surface. See cloudBestFitOBB for details.

class yade.pack.inGtsSurface_py (inherits Predicate)
This class was re-implemented in c++, but should stay here to serve as reference for implementing
Predicates in pure python code. C++ allows us to play dirty tricks in GTS which are not accessible
through pygts itself; the performance penalty of pygts comes from fact that if constructs and
destructs bb tree for the surface at every invocation of gts.Point().is_inside(). That is cached in
the c++ code, provided that the surface is not manipulated with during lifetime of the object
(user’s responsibility).

Predicate for GTS surfaces. Constructed using an already existing surfaces, which must be closed.

import gts surf=gts.read(open(‘horse.gts’)) inGtsSurface(surf)

Note: Padding is optionally supported by testing 6 points along the axes in the pad distance.
This must be enabled in the ctor by saying doSlowPad=True. If it is not enabled and pad is not
zero, warning is issued.

aabb()

class yade.pack. inSpace (inherits Predicate)
Predicate returning True for any points, with infinite bounding box.

aabb()
center ()

dim()

108 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

yade.pack.randomDensePack (predicate, radius, material=-1, dim=None, cropLayers=0, rRel-

Fuzz=0.0, spheresinCell=0, memoizeDb=None, useOBB=True,
memoDbg=Fulse, color=None)

Generator of random dense packing with given geometry properties, using TriaxialTest (aperiodic)
or PerilsoCompressor (periodic). The periodicity depens on whether the spheresInCell parameter

is given.

O.switchScene() magic is used to have clean simulation for TriaxialTest without deleting the original
simulation. This function therefore should never run in parallel with some code accessing your

simulation.

Parameters

predicate — solid-defining predicate for which we generate packing

spheresInCell — if given, the packing will be periodic, with given number of
spheres in the periodic cell.

radius — mean radius of spheres

rRelFuzz — relative fuzz of the radius — e.g. radius=10, rRelFuzz=.2, then
spheres will have radii 10 £+ (10*.2)). 0 by default, meaning all spheres will have
exactly the same radius.

cropLayers — (aperiodic only) how many layers of spheres will be added to
the computed dimension of the box so that there no (or not so much, at least)
boundary effects at the boundaries of the predicate.

dim — dimension of the packing, to override dimensions of the predicate (if it is
infinite, for instance)

memoizeDb — name of sqlite database (existent or nonexistent) to find an
already generated packing or to store the packing that will be generated, if not
found (the technique of caching results of expensive computations is known as
memoization). Fuzzy matching is used to select suitable candidate — packing will
be scaled, rRelFuzz and dimensions compared. Packing that are too small are
dictarded. From the remaining candidate, the one with the least number spheres
will be loaded and returned.

useOBB - effective only if a inGtsSurface predicate is given. If true (default),
oriented bounding box will be computed first; it can reduce substantially num-
ber of spheres for the triaxial compression (like 10x depending on how much
asymmetric the body is), see scripts/test/gts-triax-pack-obb.py.

memoDbg — show packigns that are considered and reasons why they are re-
jected/accepted

Returns SpherePack object with spheres, filtered by the predicate.

yade.pack.randomPeriPack (radius, initSize, rRelFuzz=0.0, memoizeDb=None)
Generate periodic dense packing.

A cell of initSize is stuffed with as many spheres as possible, then we run periodic compression
with PerilsoCompressor, just like with randomDensePack.

Parameters

radius — mean sphere radius

rRelFuzz — relative fuzz of sphere radius (equal distribution); see the same
param for randomDensePack.

initSize — initial size of the periodic cell.

Returns SpherePack object, which also contains periodicity information.

yade.pack.regularHexa (predicate, radius, gap, **kw)
Return set of spheres in regular hexagonal grid, clipped inside solid given by predicate. Created
spheres will have given radius and will be separated by gap space.

2.5. yade.pack module

109

Yade Reference Documentation, Release 1st edition

yade.pack.regularOrtho (predicate, radius, gap, **kw)

Return set of spheres in regular orthogonal grid, clipped inside solid given by predicate. Created
spheres will have given radius and will be separated by gap space.

yade.pack.revolutionSurfaceMeridians(sects, angles, origin=Vector3(0, 0, 0), orienta-

tion=Quaternion((1, 0, 0), 0))
Revolution surface given sequences of 2d points and sequence of corresponding angles, returning
sequences of 3d points representing meridian sections of the revolution surface. The 2d sections
are turned around z-axis, but they can be transformed using the origin and orientation arguments
to give arbitrary orientation.

yade.pack.sweptPolylines2gtsSurface (pts, threshold=0, capStart=Fulse, capEnd=False)

Create swept suface (as GTS triangulation) given same-length sequences of points (as 3-tuples).
If threshold is given (>0), then
o degenerate faces (with edges shorter than threshold) will not be created

o gts.Surface().cleanup(threshold) will be called before returning, which merges vertices mutu-
ally closer than threshold. In case your pts are closed (last point concident with the first
one) this will the surface strip of triangles. If you additionally have capStart==True and
capEnd==True, the surface will be closed.

Note: capStart and capEnd make the most naive polygon triangulation (diagonals) and will
perhaps fail for non-convex sections.

Warning: the algorithm connects points sequentially; if two polylines are mutually rotated or
have inverse sense, the algorithm will not detect it and connect them regardless in their given
order.

Creation, manipulation, IO for generic sphere packings.

class yade._packSpheres.SpherePack

Set of spheres represented as centers and radii. This class is returned by pack.randomDensePack,
pack.randomPeriPack and others. The object supports iteration over spheres, as in

>>> sp=SpherePack()
>>> for center,radius in sp: print center,radius

>>> for sphere in sp: print sphere[0],sphere[l] ## same, but without unpacking the tuple automatically

>>> for i in range(0,len(sp)): print spl[i] [0], sp[i][1] ## same, but accessing spheres by index

Special constructors

Construct from list of [(c1,r1),(c2,r2),..]. To convert two same-length lists of centers and
radii, construct with zip(centers,radii).

__init__([(list)list]) — None
Empty constructor, optionally taking list [((cx,cy,cz),r), ...] for initial data.

aabb() — tuple
Get axis-aligned bounding box coordinates, as 2 3-tuples.

add ((Vector3)arg2, (float)arg3) — None
Add single sphere to packing, given center as 3-tuple and radius

appliedPsdScaling
A factor between 0 and 1, uniformly applied on all sizes of of the PSD.

cellFill((Vector3)arg2) — None
Repeat the packing (if periodic) so that the results has dim() >= given size. The packing
retains periodicity, but changes cellSize. Raises exception for non-periodic packing.

110

Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

cellRepeat ((Vector3i)arg2) — None
Repeat the packing given number of times in each dimension. Periodicity is retained, cellSize
changes. Raises exception for non-periodic packing.

cellSize
Size of periodic cell; is Vector3(0,0,0) if not periodic. (Change this property only if you know
what you're doing).

center () — Vector3
Return coordinates of the bounding box center.

dim() — Vector3
Return dimensions of the packing in terms of aabb(), as a 3-tuple.
fromList ((list)arg2) — None

Make packing from given list, same format as for constructor. Discards current data.

fromList((SpherePack)argl, (object)centers, (object)radii) — None : Make pack-
ing from given list, same format as for constructor. Discards current data.

fromSimulation() — None
Make packing corresponding to the current simulation. Discards current data.

getClumps () — tuple
Return lists of sphere ids sorted by clumps they belong to. The return value is (stan-
dalones,[clumpl,clump?2,...]), where each item is list of id’s of spheres.

hasClumps () — bool
Whether this object contains clumps.

load ((str)fileName) — None
Load packing from external text file (current data will be discarded).
makeCloud([(Vectoré’)minC’omer:VectorS’(O, 0, 0)[7 (Vector3)maxCorner=Vector3(0, 0, 0)[,
(ﬂoat)rMean:—Z[, (ﬂoat)TRelFuzz:O[, (int)num:—l[, (bool)pem'odic:False[7
(ﬂoat)porosityz()ﬁ[, (object)pstizes:H [, (object)pstumm:H [,
(bool)distm’buteMaSS:False[, (int)seed:O[, (Matriz3)hSize=Matriz3(0, 0, 0,
0.0.0,0.0,)}]]]]]]]]]]]> — int

Create random loose packing enclosed in a parallelepiped. Sphere radius distribution can be
specified using one of the following ways:

1.rMean, rRelFuzz and num gives uniform radius distribution in rMean (1 £+ rRelFuzz).
Less than num spheres can be generated if it is too high.

2.rRelFuzz, num and (optional) porosity, which estimates mean radius so that porosity is
attained at the end. rMean must be less than 0 (default). porosity is only an initial guess
for the generation algorithm, which will retry with higher porosity until the prescibed
num is obtained.

3.psdSizes and psdCumm, two arrays specifying points of the particle size distribution func-
tion. As many spheres as possible are generated.

4.psdSizes, psdCumm, num, and (optional) porosity, like above but if num is not obtained,
psdSizes will be scaled down uniformly, until num is obtained (see appliedPsdScaling).

By default (with distributeMass==False), the distribution is applied to particle radii. The
usual sense of “particle size distribution” is the distribution of mass fraction (rather than
particle count); this can be achieved with distributeMass=True.

If num is defined, then sizes generation is deterministic, giving the best fit of target distribu-
tion. It enables spheres placement in descending size order, thus giving lower porosity than
the random generation.

Parameters

o minCorner (Vector3) — lower corner of an axis-aligned box

2.5. yade.pack module 111

http://en.wikipedia.org/wiki/Particle_size_distribution

Yade Reference Documentation, Release 1st edition

o maxCorner (Vector8) — upper corner of an axis-aligned box

o hSize (Matriz8) — base vectors of a generalized box (arbitrary parallelepiped,
typically Cell::hSize), superseeds minCorner and maxCorner if defined. For
periodic boundaries only.

o rMean (float) — mean radius or spheres
o rRelFuzz (float) — dispersion of radius relative to rMean

o num (int) — number of spheres to be generated. If negavite (default), generate
as many as possible with stochastic sizes, ending after a fixed number of tries to
place the sphere in space, else generate exactly num spheres with deterministic
size distribution.

« periodic (bool) — whether the packing to be generated should be periodic

o porosity (float) — initial guess for the iterative generation procedure (if
num>1). The algorithm will be retrying until the number of generated spheres
is num. The first iteration tries with the provided porosity, but next itera-
tions increase it if necessary (hence an initialy high porosity can speed-up the
algorithm). If psdSizes is not defined, rRelFuzz (z) and num (N) are used so
that the porosity given (p) is approximately achieved at the end of generation,

T — 3 V(1—p)
m 3m(1+z2)N”
rRelFuzz or psdSizes.

The default is p=0.5. The optimal value depends on

o psdSizes — sieve sizes (particle diameters) when particle size distribution
(PSD) is specified

¢ psdCumm — cummulative fractions of particle sizes given by psdSizes; must
be the same length as psdSizes and should be non-decreasing

o distributeMass (bool) — if True, given distribution will be used to distribute
sphere’s mass rather than radius of them.

e seed — number used to initialize the random number generator.

Returns number of created spheres, which can be lower than num depending on the
method used.

makeClumpCloud ((Vector3)minCorner, (Vector3)mazCorner, (object)clumps[,
(bool)pem'odic:False[7 (int)num:—l]]) — int
Create random loose packing of clumps within box given by minCorner and mazxCorner.
Clumps are selected with equal probability. At most num clumps will be positioned if num is
positive; otherwise, as many clumps as possible will be put in space, until maximum number
of attemps to place a new clump randomly is attained.

particleSD((Vector3)minCorner, (Vector3)mazCorner, (float)rMean, (bool)periodic=False,
(str)name, (int)numSph[, (object)mdii:H [, (object)passing:H [,
(bool)passing[sNotPercentageButCount:False[, (int)seed:O]]]]) — int
Create random packing enclosed in box given by minCorner and maxCorner, containing num-
Sph spheres. Returns number of created spheres, which can be < num if the packing is too
tight. The computation is done according to the given psd.

particleSD2((object)radii, (object)passing, (int)numSph[, (bool)periodic:False[,

(float)cloudPorosity=0.80000000000000004|, (int)seed=0]]]) — int
Create random packing following the given particle size distribution (radii and volume/mass
passing for each fraction) and total number of particles numSph. The cloud size (periodic or
aperiodic) is computed from the PSD and is always cubic.

psd([(int)bins:50[, (bool)mass:Tme]]) — tuple
Return particle size distribution of the packing. :param int bins: number of bins between
minimum and maximum diameter :param mass: Compute relative mass rather than relative
particle count for each bin. Corresponds to distributeMass parameter for makeCloud. :returns:

112

Chapter 2. Yade modules

http://en.wikipedia.org/wiki/Particle_size_distribution

Yade Reference Documentation, Release 1st edition

tuple of (cumm,edges), where cumm are cummulative fractions for respective diameters and
edges are those diameter values. Dimension of both arrays is equal to bins+1.

psdScaleExponent
[Deprecated] Defined for compatibility, no effect.

relDensity () — float
Relative packing density, measured as sum of spheres’ volumes / aabb volume. (Sphere
overlaps are ignored.)

rotate((Vector3)azis, (float)angle) — None
Rotate all spheres around packing center (in terms of aabb()), given axis and angle of the
rotation.

save ((str)fileName) — None
Save packing to external text file (will be overwritten).

scale((float)arg2) — None
Scale the packing around its center (in terms of aabb()) by given factor (may be negative).

toList () — list
Return packing data as python list.

toSimulation()
Append spheres directly to the simulation. In addition calling O.bodies.append, this method
also appropriately sets periodic cell information of the simulation.

>>> from yade import pack; from math import * >>> sp=pack.SpherePack()
Create random periodic packing with 20 spheres:

>>> sp.makeCloud((0,0,0),(5,5,5),rMean=.5,rRelFuzz=.5,periodic=True,num=20) 20
Virgin simulation is aperiodic:

>>> O.reset() >>> O.periodic False

Add generated packing to the simulation, rotated by 45° along +z

>>> sp.toSimulation(rot=Quaternion((0,0,1),pi/4),color=(0,0,1)) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Periodic properties are transferred to the simulation correctly, including rotation:

>>> O.periodic True >>> O.cell.refSize Vector3(5,5,5) >>> O.cell.hSize Matrix3(3.53553,-
3.53553,0, 3.53553,3.53553,0, 0,0,5)

The current state (even if rotated) is taken as mechanically undeformed, i.e. with identity
transformation:

>>> O.cell.trsf Matrix3(1,0,0, 0,1,0, 0,0,1)
Parameters

o rot (Quaternion/Matriz3) — rotation of the packing, which will be applied on
spheres and will be used to set Cell.trsf as well.

o **¥kw — passed to utils.sphere
Returns list of body ids added (like O.bodies.append)

translate((Vector3)arg2) — None
Translate all spheres by given vector.

class yade._packSpheres.SpherePackIterator

__init__((SpherePacklterator)arg2) — None
next () — tuple

Spatial predicates for volumes (defined analytically or by triangulation).

2.5. yade.pack module 113

Yade Reference Documentation, Release 1st edition

class yade._packPredicates.Predicate

aabb() — tuple
aabb((Predicate)argl) — None

center () — Vector3
dim() — Vector3

class yade._packPredicates.PredicateBoolean(inherits Predicate)
Boolean operation on 2 predicates (abstract class)

A
B

__init__QO
Raises an exception This class cannot be instantiated from Python

class yade._packPredicates.PredicateDifference (inherits PredicateBoolean — Predicate)
Difference (conjunction with negative predicate) of 2 predicates. A point has to be inside the first
and outside the second predicate. Can be constructed using the - operator on predicates: predl
- pred2.

__init__((object)arg2, (object)arg3) — None

class yade._packPredicates.PredicatelIntersection (inherits PredicateBoolean — Predicate)
Intersection (conjunction) of 2 predicates. A point has to be inside both predicates. Can be
constructed using the & operator on predicates: predl & pred?2.

__init__((object)arg2, (object)arg3) — None

class yade._packPredicates.PredicateSymmetricDifference (inherits PredicateBoolean —

Predicate)
SymmetricDifference (exclusive disjunction) of 2 predicates. A point has to be in exactly one

predicate of the two. Can be constructed using the ~ operator on predicates: predl ~ pred2.
__init__((object)arg2, (object)arg3) — None

class yade._packPredicates.PredicateUnion(inherits PredicateBoolean — Predicate)
Union (non-exclusive disjunction) of 2 predicates. A point has to be inside any of the two predicates
to be inside. Can be constructed using the | operator on predicates: predl | pred2.

__init__((object)arg2, (object)arg3) — None
class yade._packPredicates.inAlignedBox (inherits Predicate)

Axis-aligned box predicate

__init__((Vector8)minAABB, (Vector3)maxAABB) — None
Ctor taking minumum and maximum points of the box (as 3-tuples).

class yade._packPredicates.inCylinder (inherits Predicate)
Cylinder predicate

__init__((Vector8)centerBottom, (Vector3)centerTop, (float)radius) — None
Ctor taking centers of the lateral walls (as 3-tuples) and radius.

class yade._packPredicates.inEllipsoid(inherits Predicate)
Ellipsoid predicate

__init__((Vector3)centerPoint, (Vector3)abc) — None
Ctor taking center of the ellipsoid (3-tuple) and its 3 radii (3-tuple).

class yade._packPredicates.inGtsSurface (inherits Predicate)
GTS surface predicate

__init__((object)surface[, (bool)noPad]) — None
Ctor taking a gts.Surface() instance, which must not be modified during instance lifetime.
The optional noPad can disable padding (if set to True), which speeds up calls several times.
Note: padding checks inclusion of 6 points along +- cardinal directions in the pad distance
from given point, which is not exact.

114 Chapter 2. Yade modules

Yade Reference Documentation, Release 1st edition

surf
The associated gts.Surface object.

class yade._packPredicates.inHyperboloid (inherits Predicate)
Hyperboloid predicate

__init__((Vector8)centerBottom, (Vector3)centerTop, (float)radius, (float)skirt) — None
Ctor taking centers of the lateral walls (as 3-tuples), radius at bases and skirt (middle radius).

class yade._packPredicates.inParallelepiped (inherits Predicate)
Parallelepiped predicate

__init__((Vector3)o, (Vector8)a, (Vector3)b, (Vector3)c) — None
Ctor taking four points: o (for origin) and then a, b, ¢ which define endpoints of 3 respective
edges from o.

class yade._packPredicates.inSphere (inherits Predicate)
Sphere predicate.

__init__((Vector8)center, (float)radius) — None
Ctor taking center (as a 3-tuple) and radius

class yade._packPredicates.notInNotch (inherits Predicate)
Outside of infinite, rectangle-shaped notch predicate

__init__((Vector8)centerPoint, (Vector3)edge, (Vector3)normal, (float)aperture) — None
Ctor taking point in the symmetry plane, vector pointing along the edge, plane normal and
aperture size. The side inside the notch is edgexnormal. Normal is made perpendicular to
the edge. All vectors are normalized at construction time.

Computation of oriented bounding box for cloud of points.

yade._packObb.cloudBestFit0BB((tuple)argl) — tuple
Return (Vector3 center, Vector3 halfSize, Quaternion orientation) of best-fit oriented bounding-box
for given tuple of points (uses brute-force velome minimization, do not use for very large clouds).

2.6 yade.plot module

Module containing utility functions for plotting inside yade. See examples/simple-scene/simple-scene-
plot.py or examples/concrete/uniax.py for example of usage.

yade.plot.data
Global dictionary containing all data values, common for all plots, in the form {‘name’:[value,...],...}.
Data should be added using plot.addData function. All [value,...] columns have the same length,
they are padded with NaN if unspecified.

yade.plot.plots
dictionary x-name -> (yspec,...), where yspec is either y-name or (y-name,’line-specification’). If
(yspec,...) is None, then the plot has meaning of image, which will be taken from respective
field of plot.imgData.

yade.plot.labels
Dictionary converting names in data to human-readable names (TeX names, for instance); if a
variable is not specified, it is left untranslated.

yade.plot.live
Enable/disable live plot updating. Disabled by default for now, since it has a few rough edges.

yade.plot.liveInterval
Interval for the live plot updating, in seconds.

yade.plot.autozoom
Enable/disable automatic plot rezooming after data update.

2.6. yade.plot module 115

http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/simple-scene/simple-scene-plot.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/simple-scene/simple-scene-plot.py
http://bazaar.launchpad.net/~yade-dev/yade/trunk/annotate/head%3A/examples/concrete/uniax.py

Yade Reference Documentation, Release 1st edition

yade.plot.plot (noShow=False, subPlots=True)
Do the actual plot, which is either shown on screen (and nothing is returned: if noShow is False)
or, if noShow is True, returned as matplotlib’s Figure object or list of them.

You can use

>>> from yade i