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Abstract. A quasi-static homogeneous drained triaxial compression test on cohesionless sand 
under constant lateral pressure was simulated using a three-dimensional DEM model. Grain 
roughness was modelled by two different approaches: first with contact moments applied to 
rigid spheres and second with clusters of rigid spheres imitating irregular particle shapes. The 
effect of the grain roughness (shape) on shear strength, dilatancy, energy and dissipation was 
analyzed using both models. Numerical results were directly compared with experimental 
results on Karlsruhe sand.  
 
1 INTRODUCTION 

Granular materials consist of grains in contact and of surrounding voids, which change 
their arrangement depending on environmental factors and initial density. Their 
micromechanical and fabric behaviour is inherently discontinuous, heterogeneous and non-
linear. To describe their behaviour, two main approaches are used: continuum and discrete 
ones. The first ones perform simulations at the global scale using the finite element method on 
the basis of e.g. elasto-plastic and hypoplastic constitutive models enhanced by a 
characteristic length of micro-structure to describe strain localization. In turn, the latter ones 
perform simulations at the grain scale, i.e. each grain is modelled individually. Their 
advantages are that they directly model micro-structure and can be used to comprehensively 
study the mechanism of the initiation, growth and formation of shear zones at the micro-level 
which strongly affect macro-properties of granular matter. The disadvantages are: high 
computational cost, inability to model grain shape accurately, difficulty to validate it 
experimentally and inertial effects and damping effects lose their meaning in quasi-static 
problems. However, they become more and more popular nowadays for modelling granular 
materials due to an increasing speed of computers and a connection possibility to the finite 
element method. 

Many experimental and numerical studies revealed that irregularly shaped grains strongly 
affect the quasi-static mechanical behavior of granular materials. To resemble the real grain 
shape (roughness), two main approaches are usually used: 1) contact moments between rigid 
spheres or disks [1-6]) or clusters of combined discrete elements that form irregularly-shaped 
grains [7-11].  

In this paper, numerical studies of quasi-static homogeneous axisymmetric triaxial 
compression tests were carried out to determine the macroscopic behaviour of a sand 
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specimen composed of discrete elements. The three-dimensional discrete model YADE 
developed at University of Grenoble was used [3]. The particle breakage has not been 
considered. Discrete simulation results were quantitatively compared with the corresponding 
experimental data from drained axisymmetric triaxial compression tests performed by Wu 
[12] at Karlsruhe University with real sand. The intention of our studies was to calculate the 
effect of the grain roughness (shape) using these two above mentioned methods on the shear 
strength, dilatancy, energy and dissipation of real sand (so-called Karlsruhe sand), which had 
the same initial void ratio, mean grain diameter and grain distribution. Such a direct 
comparison of the effect of grain roughness using 2 different approaches has not been 
performed yet. A special attention was paid to the energy transformation in sand and its 
elastic and dissipative characteristics, playing an important role in the granular matter 
behaviour. The energy and dissipation results were compared with the similar ones during 
two-dimensional simulations of biaxial compression with round particles performed by Kruyt 
and Rothenburg [13] and by Bi et al. [14]. 

2 DISCRETE ELEMENT METHOD 
The discrete element method (DEM) is widely used to model a range of processes across 

many industries. To simulate the behaviour of sand, a three-dimensional spherical discrete 
model YADE was developed at University of Grenoble [3] by taking advantage of the so-
called soft-particle approach (i.e. the model allows for particle deformation which is modeled 
as an overlap of particles). A dynamic behaviour of the discrete system is solved numerically 
using a force-displacement Lagrangian approach and tracks the positions, velocities, and 
accelerations of each particle individually. It uses an explicit finite difference algorithm 
assuming that velocities and accelerations are constant in each time step. To calculate forces 
acting in particle-particle or particle-wall contacts, a particle interaction model is assumed in 
which the forces are typically subdivided into normal and tangential components. The total 
forces acting on each particle are summed. Next, the problem is reduced to the integration of 
Newton’s equations of motion for both translational and rotational degrees of freedom. As the 
results, the accelerations of each particle are obtained. The time step is incremented and 
accelerations are integrated over time to determine updated particle velocities and positions. 
To maintain the numerical stability of the method and to obtain a quick convergence to a 
quasi-static state of equilibrium of the assembly of particles, damping forces have to be 
introduced [15]. To increase the rolling resistance, contact moments between spheres (caused 
by the normal force) were introduced [3]. Figure 1 shows the mechanical response of contact 
models.  

The following five main local material parameters are needed for discrete simulations: Ec, 
(modulus of elasticity of the grain contact), υc Poisson’s ratio of the grain contact), μ (inter-
particle friction angle), β (rolling stiffness coefficient) and η (plastic rolling coefficient) using 
spheres with contact moments (Ec, υc and μ without contact moments). In addition, the particle 
radius R, particle density ρ and damping parameters α are required. The material parameters 
were calibrated with corresponding axisymmetric triaxial laboratory test results on Karlsruhe 
sand by Wu [12]. The index properties of Karlsruhe sand are: mean grain diameter d50=0.50 mm, 
grain size among 0.08 mm and 1.8 mm, uniformity coefficient U=2, maximum specific weight 
γd

max=17.4 kN/m3, minimum void ratio emin=0.53, minimum specific weight γd
min=14.6 kN/m3 



First A. Author, Second B. Author and Third C. Coauthor. 

3 
 

and maximum void ratio emax=0.84. The following discrete material parameters for rigid spheres 
with contact moments were assumed for discrete studies: Ec=0.30 GPa, νc=0.3, μ=30o, η=0.2, 
β=0.1, ρ=2.6 kNs2/m4, α=0.08 and d50=5.0 mm. 
 

 
Figure 1: Mechanical response of contact models: a) tangential contact model, b) normal contact model  

and c) rolling contact model [3] 
 

In numerical simulations, a cubic sand specimen of 10×10×10 cm3 was used. A simplified 
linear grain distribution curve was used for Karlsruhe sand (grain range among 2 mm and 8 
mm). In order to save the computation time, remaining discrete simulations showing the 
capabilities of DEM were carried out with d50=5 mm instead of d50=0.5 mm. The test was 
modelled using confining smooth rigid wall elements (without inducing shear localization). 
The top and bottom boundaries moved vertically as loading platens under strain-controlled 
conditions to simulate the confining pressure p. To ensure the test was conducted under quasi-
static conditions, the loading speed was slow enough. The initial configuration of the sand 
specimen was isotropic. Each assembly was prepared by first dropping the particles into the 
container under a gravitational field with the friction coefficient between particles set to zero. 
Gravity was varied to obtain a desired initial density caused by grain overlapping (thus, it was 
possible to exactly reproduce the experimental initial sand volumetric weight). The assembly 
was then allowed to settle to a state where the kinetic energy was negligible, before it is 
compressed under an initial confining pressure. The isotropic assembly was then subjected to 
boundary driven triaxial compression. 
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Figure 2 presents the 12 different clusters of spheres used in discrete calculations. In the 
case of the cluster of 2 spheres without the overlap (shape ‘f’), 26’300 clusters were used 
composed of 52’600 spheres. In turn, 28’250 clusters were used with 197’750 spheres to 
model simple ellipsoids (shape ‘i’) and 14’500 clusters were used with 594’500 spheres to 
model disks (shape ‘l’). In the case of 3D calculations with spheres using contact moments, 
6’600 spheres were used. 

 

 
 

Figure 2: Different symmetric grain shapes created by clusters of hard spheres  
used for discrete simulations (d - grain diameter) 

3  DISCRETE RESULTS OF TRIAXIAL TEST 

3.1 Effect of grain roughness (shape) on strength and volume changes  
Figure 3 shows the calculated evolution of the vertical normal stress and overall void ratio 

versus vertical normal strain for different clusters of spheres of Fig.2 (without contact 
moments) during triaxial compression with initially dense sand (eo=0.53, d50=5 mm) under 
confining pressure of p=200 kPa. Similarly as in the real experiment (Fig.3), the initially 
dense specimens exhibits initially elasticity, hardening (connected to contractancy and 
dilatancy), reaches a peak at about of ε1=3%, gradually softens and dilates reaching at large 
vertical strain of 25-30% the same value of the vertical normal stress with the granular 
specimen deforming at constant volume, i.e. a critical state is always reached. Thus, the 
particle shape is not essential for the global critical internal friction angle (except of the case 
with spheres). The both mobilized strength and dilatancy increase with increasing grain 
roughness (rolling resistance) combined with an increase of the sphere number. Thus, the 
irregularly shaped particles provide obviously higher internal friction angles and have less 
tendency to rotate than perfect circular particles. The global maximum mobilized internal 
friction angle increases from φmax=28° (spheres) up to φmax=48.9° (disks), respectively (Fig.3). 
In turn, the global residual internal friction angle increases from φcr=15° (spheres ‘a’ of Fig.2) 
up to φcr=31° (disks ‘l’ of Fig.2), respectively (Fig.3). The dilatancy angle ψ raises from ψ=5o 
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(spheres) up to ψ=30o (disks), respectively. The elastic modulus is also similar independently 
of the grain roughness. The granular system shows small fluctuations in the residual phase. 

 

 

 
A)                                                  B) 

 
FIGURE 3: Effect of particle roughness (without contact moments) on vertical normal stress σ1 versus vertical 
normal strain ε1 (A) and volumetric strain εv versus vertical normal strain ε1 (B) during homogeneous triaxial 

compression test for different grain shapes of Fig.4 (eo=0.53, p=200 kPa, d50=5 mm)  
 

Figure 4 shows a direct comparison between different granular clusters composed of 2 
ellipsoids, 2 spheres and 6 spheres without contact moments, pure spheres with contact 
moments and experiments (Wu 1992). All curves are qualitatively the same. The global 
maximum internal friction angle is 42.5° at ε1=5% (spheres with contact moments) and 41°- 
(clusters) ε1=3%. In turn, the global residual internal friction angle is 32.5° (spheres with 
contact moments) and 31° (clusters). As compared to the results with spheres with contact 
moments, the best agreement with experiments provides clusters of 6 spheres. Note that it is 
possible to calibrate more accurately a discrete model with each grain shape of Fig.2 with 
respect to laboratory tests. 

3.2 Effect of grain roughness (shape) on energy and dissipation 
In the granular system there exist 3 main energies: the elastic energy, kinetic energy and 

energy dissipation. In addition, numerical dissipation also exists. The elastic internal energy 
stored at contacts between grains Ee is done by elastic contact tangential forces on tangential 
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elastic displacements Ut, contact normal forces on penetration depths U and elastic contact 
moments on elastic rotations ω (when contact moments are considered). In general, the elastic 
internal energy is (N- contact number). The kinetic energy Ec of grains is caused by their 
translation and rotation. Due to quasi-static conditions, the effect of Ec is negligible (less than 
1%). The energy plastic dissipation Dp is due to plastic (shear) tangential forces and plastic 
(shear) moments during slip (sliding) and rotation (see Fig.1). In addition, numerical 
dissipation Dn takes place during translation and rotation. The total accumulated energy 
E=Ee+Ec+Dp+Dn is equal to the external boundary work W done on the assembly by 6 
external forces on displacements of 6 rigid external walls. 
 

 
A)                                                                    B) 

 
FIGURE 4: Effect of some clusters of spheres of Fig.2 without contact moments and single spheres with contact 
moments on vertical normal stress σ1 versus vertical normal strain ε1 (A) and volumetric strain εv versus vertical 

normal strain ε1 (B) compared to experiments (→) during homogeneous triaxial compression test  
(eo=0.53, p=200 kPa, d50=5 mm) 

 
Figure 5 shows the calculated effect of the grain roughness on the total accumulated energy 

E, elastic internally stored energy at contacts Ee, plastic dissipation Dp and numerical damping 
Dn (Eq.8) in initially dense sand (eo=0.53, p=200 kPa, d50=5.0 mm). Compared were the 
systems composed of spheres with contacts moments and systems of clusters of 2 spheres and 
6 spheres without contact moments (Fig.2). In turn, the evolution of the external energy rate 
δE, elastic internal energy rate δEe and plastic dissipation rate δDp is demonstrated in Fig.6. 
Finally, Figure 7 demonstrates the evolution of the kinetic energy of the systems. 

There exists a roughly linear relationship between the total energy and plastic damping 
against the vertical normal strain (Fig.5). The plastic dissipation during frictional sliding is 
equal at the strain of ε1=3% (corresponding to the maximum vertical stress) to 50% of the 
total energy (irregularly-shaped grains). At the residual state of ε1=30%, it is already equal to 
88% (irregularly-shaped grains) of the total energy. The numerical damping is equal always to 
6% of the total energy. The evolution of three components of the elastic internal energy is 
similar to the evolution of the shear strength (the maximum value is at ε1=5%) (Fig.3). At the 
beginning of deformation at ε1<1% (when the specimen is in the elastic range), the total 
energy is almost fully converted into the elastic energy. The change of the elastic internal 
work is initially positive. It rapidly approaches zero and a small negative value at about 
ε1=5% (Fig.6) and afterwards slightly increases approaching an asymptote at zero. Beyond 
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strains of ε1=5%, almost the entire input work is dissipated due to plastic deformation and 
numerical damping (the external energy rate and dissipation rate are equal δW≅δD). 
 

A) 

B) 

C) 

           I                                                            II 
 
Figure 5: Calculated evolution of: a) total energy W, b) plastic dissipation Dp, c) elastic work in normal direction 

Ec
n, d) elastic work in tangential direction Ec

s, e) numerical non-viscous damping Dn during homogeneous 
triaxial compression test for: A) single spheres with contact moments, B) clusters of 2 spheres, C) clusters of 6 

spheres (eo=0.53, p=200 kPa, d50=5 mm) (I) wide view, II) zoom) 
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A)                                                        B) 

 
Figure 6: Calculated evolution of: a) external energy rate δW, b) elastic internal work rate δEc and c) plastic 

energy dissipation rate δD during homogeneous triaxial compression test: A) clusters of 2 spheres, B) clusters of 
6 spheres (eo=0.53, p=200 kPa, d50=5 mm) 

 

 
A)                                                        B) 

 
Figure 7: Calculated evolution of kinetic energy Ec during homogeneous triaxial compression test:  

A) clusters of 2 spheres, B) clusters of 6 spheres (eo=0.53, p=200 kPa, d50=5 mm),  
a) translational kinetic energy, b) rotational kinetic energy 

 
The elastic internal work is 80% at ε1=1%, 40% at ε1=3% and 5% at ε1=30% (irregularly-

shaped grains) of the total energy, respectively. The residual elastic internal work is 
performed by contact normal forces in 70%, by contact tangential forces in 20% and by 
contact moments in 10% in the case of single spheres with contact moments, and by contact 
normal forces in 70% and contact tangential forces in 30% with irregularly-shaped grains. 
Thus, the largest internal work is performed by contact normal forces and the smallest one by 
contact moments. The elastic energy ratio is the same at the residual state. 

The evolution curves in Figs.5 are qualitatively similar to those demonstrated by Bi et al. 
[14]. In turn, the evolution curves in Fig.6 are slightly different in the initial phase than those 
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shown by Kruyt and Rothenburg [13], which were calculated using periodic boundary 
conditions. The calculated energy quantities are different than in analyses by Bi et al. [14] 
using the software of PFC2D (where e.g. the calculated elastic energy was significantly 
higher: 90% (at ε1=3%) and 20% (at ε1=5%) of the total energy. 

The kinetic energy is very small due to the quasi-static loading of the granular system 
(Fig.7). A release of the elastic energy drives grains to move. At the elastic stage, the 
rotational kinetic energy is close to zero. After it increases and slightly decreases. At the 
residual phase, the kinetic energy shows fluctuations which correspond to the evolution of the 
elastic energy and damping rate. 

 

4 CONCLUSIONS 
The numerical simulations of a homogeneous triaxial compression test show that a discrete 
model is capable to reproduce the most important macroscopic properties of cohesionless 
granular materials without it being necessary to describe the granular structure perfectly. 
Comparing the numerical simulations with the experimental triaxial tests conducted for 
different initial void ratios and confining pressures shows that the model is able to realistically 
predict the experimental results for cohesionless sand. The following detailed conclusions can 
be also drawn: 

- The model is capable of closely reproducing the behaviour of cohesionless soils in 
the elastic, contraction, and dilatancy phase and at the critical state. At large strains, 
the granular specimen reaches always a critical state independently of its initial 
density. The higher the confining pressure, the smaller are both the global friction 
and dilatancy.  

- The sand grain roughness can be modelled by means of spheres with contact 
moments or irregularly-shaped grains. The calculations with spheres are significantly 
faster, but those with irregularly-shaped grains are more realistic.  

- The largest internal work is performed by contact normal force and the smallest one 
by contact moments. 

- At the elastic stage, the boundary external work is mainly converted into elastic 
energy. At the residual state, the almost total external boundary work is dissipated by 
plastic deformation. 

- The kinetic energy is very small due to quasi-static loading. The translational kinetic 
energy is higher than the rotational one. 

Our research will be continued. The discrete simulations will be carried with sand during 
biaxial compression out by taking into account shear localization. The local phenomena 
occurring in a shear zone (such as buckling of granular columns, vortices, force chain cycles, 
periodic alternating dilatancy and contractancy) will be carefully studied. 
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