

Discrete Element Based Hydraulic Fracture Model

Test Case 3: Single fracture in homogenous poroelastic, thermo elastic media

(a) Newtonian fluid without proppant in a poroelastic media

Robert Caulk, Graduate Research Assistant Ingrid Tomac, Ph.D., Assistant Research Scientist University of California, San Diego Department of Structural Engineering

Discrete Element Method

1. Discrete element tracking (Yade): Newton's 2^{nd} Law: $\ddot{u} = F/m$

2. Determination of forces (particle interactions):

 $k_{n} = \frac{E_{1}r_{1}E_{2}r_{2}}{E_{1}r + E_{2}r_{2}} \& k_{s} = vk_{n} | F_{n} = k_{n}\Delta D \& F_{s} = F_{s,prev} + k_{s}\Delta u_{s}$

3. Failure criteria (Scholtes and Donze 2012):

$$F_{n_{max}} = -tA_{int} \& F_{s_{max}} = F_n \tan \varphi + cA_{int}$$

4. Fluid coupling (Yade, Chareyre et al. 2012):
$$[G]\{P\} = [E]\{\dot{X}\} + Q_q$$

5. Triangulation created using particles as nodes6. Conductance governed by Poiseuille's law (Papachristos, 2017):

non fractured,
$$k = \alpha \frac{A_{ij}R_{ij}^{h^2}}{\mu}$$
 & fractured, $k = \frac{h^3}{12\mu}$

7. Pressure and viscous forces on particles:

$$F_{p} = A_{p}(p_{i} - p_{j})\boldsymbol{n} \& F_{v_{total}} = A_{f}(p_{i} - p_{j})\boldsymbol{n}$$
$$F_{v,p} = F_{v,total} \gamma \& \gamma = A_{p}/A_{total}$$

 A_f =pore throat cross section, p = pore pressure * G = conductance matrix, $E\dot{X}$ = rate of volume change P = pore pressures, F = force m = mass, \ddot{u} = acceleration

Numerical Methods and Assumptions

- Particle position explicit finite difference
- Fluid flow pore finite volume

Model Assumptions:

- Matrix permeability Poiseuille's law
- Fracture permeability parallel plate approximation
- Mohr-coulomb failure criteria based on particle size
- Broken bonds contain a residual fracture width
- Calibrated micro-parameters yield emergent behaviors according to specified macro parameters
- 10 cm perforation depth
- Constant pressure and stress boundary conditions

ptions		
fference		
σ_V		100 m
150) m	150 m
Micro parameter	Value (DEM)	Description
E_{i}	32 (GPa)	Young's modulus
k_s/k_n	0.05	Stiffness ratio
ϕ	25^{o}	friction angle
c	$15 \mathrm{MPa}$	cohesion
t	$2.3 \mathrm{MPa}$	tensile strength
γ_{int}	1.329	interaction range
r	$1~\mathrm{m}\pm0.25$	particle radii
ho	$5000 \ \mathrm{kg/m^3}$	particle density
n	0.38	pack porosity
P_p	$27 \mathrm{MPa}$	reservoir pressure
k_{factor}	9e-16	permeability factor
\check{K}_{fluid}	$2.2~\mathrm{GPa}$	fluid bulk modulus
μ	0.001 Pa*s	viscosity
$h_{residual}$	1e-6 m	residual aperture

Fracture Length

Fracture Width

Net Pressure

Leak-off Rate

Pore Pressure

*Fractured cells shown in green

Pore pressure change (Pa) 0.0e+00 2.5e+5 5e+5 7.5e+5 1.0e+06

*Fractured cells shown in green

Extra Plots

Width of pressurized penny shaped crack (Sneddon and Elliot 1946)

$$w(r) = \frac{8p_{net}R}{\pi E'}\sqrt{1 - (r/R)^2}$$

Propagation presure (Perkins and Kern 1961):

$$p_{net,c} = \left(\frac{2\pi^3 \gamma_F E'^2}{3V}\right)^{1/5}$$

Conservation of volume:

$$\Delta V_f = q_i \Delta t_p - V_L$$

 V_L =leak off volume, q_i = injection flow rate * w = fracture width, p_{net} = net pressure E' = Young's modulus γ_F = fracture energy ,R = fracture radius