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Abstract 

 

The numerical simulations show the potential of a lattice discrete approach to model fracture in brittle 

materials during different two-dimensional quasi-static processes of loading behaviour. The 2D 

calculations were carried out for brittle specimens subject to uniaxial compression, uniaxial extension and 

shear. The effect of the specimen size on the global stress-strain diagram during uniaxial tension was also 

investigated. The advantages and disadvantages of the model were outlined. 

 

Keywords: beam, brittle material, discrete method, fracture, lattice model, size effect 

 

1. Introduction 
 

Cracks are a fundamental phenomenon in brittle materials (Bazant 2003). The fracture process is a major 

case of damage in brittle materials under mechanical loading caused by a significant degradation of the 

material strength. It is highly complex due to a heterogeneous structure of brittle materials over many 

different length scales, e.g. changing in concrete from the few nanometers (hydrated cement) to the 

milimeters (aggregate particles). A realistic description of the fracture process is of a major importance to 

ensure safety of the structure and to optimise the material behaviour. 

 

The phenomenon of the propagation of cracks in brittle materials can be modelled with continuous and 

discontinuous models. Continuum models describing the mechanical behaviour of concrete were 

formulated within non-linear elasticity (Liu et al. 1977, Palaniswamy and Shah 1974, Kompfner 1983), 

rate-independent plasticity (Mróz 1972, Pietruszczak et al. 1988, Klisinski and Mróz 1988, Menetrey and 

Willam 1995, Bobinski and Tejchman 2005a), damage theory (Dragon and Mróz 1979, Peerlings et al. 
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1998, di Prisco and Mazars 1996, Bobinski and Tejchman 2005b), endochronic theory (Bazant and Bhat 

1976, Bazant and Shieh 1978), coupled damage and plasticity (Klisinski and Mróz 1988, de Borst et al. 

1999, Ibrahimbegovic et al. 2003), microplane theory (Bazant and Ozbolt 1990). To properly model the 

thickness and spacing of cracks, continuum models require an extension in the form of a characteristic 

length. Such extension can by done with strain gradient (Zbib and Aifantis 1989, Mühlhaus and Aifantis 

1991, Peerlings et al. 1998, Pamin and de Borst 1998, Chen et al. 2001, Pamin 2004), viscous (Sluys 

1992, Sluys and de Borst 1994) and non-local terms (Bazant 1986, Pijaudier-Cabot and Bazant 1987, 

Bazant and Jirasek 2002, Bobinski and Tejchman 2004). Within discontinuous methods, a discrete 

element method DEM (Donze at al. 1999, D’Addetta et al. 2003) and a lattice model (Herrmann et al. 

1989, Vervuut et al. 1994, van Mier et al. 1995, Schlangen and Garboczi 1997, Lilliu and van Mier 2003, 

Vidya Sagar 2004) were applied among others. The lattice models are the simplest discrete models to 

simulate fracture in brittle materials consisting of a main crack with various branches, secondary cracks 

and microcracks. 

 

The intention of our research is to describe the mechanism of fracture in quasi-brittle materials using 

continuum (Bobinski and Tejchman 2004, 2005a, 2005b) and discrete models (Kozicki and Tejchman 

2003). In the case of discrete models, a lattice approach was used in the first step. The goal of simulations 

presented in this paper was to present the potential of a lattice model to model the fracture process in 

brittle materials during different two-dimensional processes of loading (uniaxial compression and 

extension, and shear). In contrast to a lattice model presented by Vervuut et al. (1994), van Mier et al. 

(1995), Schlangen and Garboczi (1997), and Lilliu and van Mier (2003), a geometric type lattice model 

was used. Owing to that, the computational effort was significantly reduced. 

 

2. Lattice model 
 

In a conventional lattice model used to describe the fracture process in concrete or reinforced concrete 

(Vervuut et al. 1994, van Mier et al. 1995, Schlangen and Garboczi 1997, Lilliu and van Mier 2003), each 

quasi-brittle material is discretized as a lattice composed of Bernoulli beams (Fig.1) that transfer normal 

forces, shear forces and bending moments. Fracture is simulated by performing a linear elastic analysis 

under loading and removing a beam element that exceeds tensile strength. Normal forces, shear forces 

and moments are calculated using a conventional simple beam theory. The stiffness matrix is constructed 

for the entire lattice. The displacement vector is calculated similarly as in the conventional FEM (by 

multiplication of the inverse global stiffness matrix with the load vector). The heterogeneity of the 
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material is taken into account by assigning different strengths to beams (using a Gaussian or Weibull 

distribution) or by assuming random dimensions of beams and random geometry of the lattice mesh or by 

a mapping of different material properties to beams corresponding to the cement matrix, aggregate and 

interface zones (Fig.2), respectively in the case of concrete. To obtain aggregate overlay in the lattice, a 

Fuller curve is usually chosen for the distribution of grains. The ratio between the beam height and the 

beam length determines the Poisson’s ratio. The beam length in concrete should be smaller than lb<da
min 

(where da
min is the minimum aggregate diameter). The model can identify micro-cracking, crack 

branching, crack tortuosity and bridging which lead to the fracture process to be followed until complete 

failure (Vidya Sagar 2004). It enables also to capture a size effect during tension (Vidya Sagar 2004). The 

advantages of this approach are simplicity and a direct insight in the fracture process on the level of the 

micro-structure. A complex crack patterning can be reproduced. Therein a limited number of parameters 

is needed. By applying an elastic-purely brittle local fracture law at the particle level, global softening 

behaviour is observed. The disadvantages of the classical lattice model are following: the results depend 

on the beam size and direction of loading, the response of the material is too brittle (due to the assumed 

brittleness of single beams), the compressed beam elements overlap each other and an extreme 

computational effort on the structure level is needed. The first disadvantage can be removed by assuming 

a heterogeneous structure (Schlangen and Garboczi 1997). In turn, the second drawback can be improved 

by 3D calculations and consideration of very small particles (Lilliu and van Mier 2003), and by applying 

a non-local approach in calculations of beam deformations (Schlangen and Garboczi 1997). 

 

In our 2D-lattice model, the quasi-brittle material was discretized in the form of a triangular grid 

including beam elements. The distribution of beams was assumed to be completely random analogously 

to a Voronoi’s scheme. First, a triangular grid was created in the material with the side dimensions equal 

to g (Fig.3). In each triangles of the grid, additional interior squares were assumed with an area of s×s 

(s<g). Next, one point was selected at random within these interior squares. Later, all points inside of 

squares were connected with neighbouring ones within a distance of rmax to create a non-uniform mesh of 

beams, where the maximum beam length was rmax (e.g. rmax=2g), the minimum beam length was rmin (e.g. 

rmin=0.1g for s=0.6g) and the minimum angle between beams was assumed to be as α (e.g. α=20o). An 

uniform triangular mesh could be obtained only for the parameter s=0. Using this grid generation method, 

the beams could cross each other in two dimensional calculations (similarly as in the lattice model by 

Burt and Dougill (1977)) but they did not intersect each other in three-dimensional analyses. The beams 

possessed a longitudinal stiffness described by the parameter kl (which controls the changes of the beam 
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length) and a bending stiffness described by the parameter kb (which controls the changes of the angle 

between beams).  

 

In contrast to a conventional lattice method (Schlangen and Garboczi 1997), our model is of a kinematic 

type, i.e. the calculations of beam displacements were carried out on the basis of the consideration of 

successive geometry changes of beams due to translation, rotation and deformation (normal and bending). 

Thus, the global stiffness matrix was not built and the calculation method had an explicit character. The 

displacement of the center of each beam was calculated as the average displacement of two end nodes 

belonging to the beam from the previous iteration step: 
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wherein jX
→

∆  - resultant node displacement, W
→

 - node displacement due to the beam translation, R
→

 - 

node displacement due to the beam rotation, kl - longitudinal stiffness kb - bending stiffness, D
→

 - node 

displacement due to a change of the beam length (induced by the longitudinal stiffness parameter kl), B
→

 - 

node displacement due to a change of the rotation angle between beams (induced by the bending stiffness 

parameter kb), i - beam number, j - node number and n – number of beams belonging to the same node. 

The node displacements are calculated successively during each calculation step.   loading increment.  

 

The calculation method of the resultant node displacement vector by Eq.2 is shown below on the example 

of a simple lattice composed of 4 beams during one displacement increment (Fig.5). The co-ordinates of 

the nodes ‘1-5’are following: node ‘1’  (0.4, 1.5), node ‘2’  (0.8, 0.6), node ‘3’  (0.0, 0.0), node ‘4’  (1.6, 

0.5) and node ‘5’  (2.0, 0.0). The nodes ‘3’  and ‘5’  are fixed and the node ‘1’  is assumed to displace to the 

point with the new co-ordinates (0.58, 1.42). The displacement vectors of the node ‘2’  in the beams ‘1’ , 
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‘2’  and ‘3’  are: 2
1 (0.09, 0.04)W

→

= − , 2
2 (0,0)W

→

= , 2
3 (0,0)W

→

= , 2
1 ( 0.065, 0.012)R

→

= − − , 2
2 (0,0)R

→

= , 

2
3 (0,0)R

→

= , 2
1 (0.035, 0.131)D

→

= − , 2
2 (0,0)D

→

= , 2
3 (0,0)D

→

= , 2
1 (0.124,0.044)B

→

= , 2
2 (0.44, 0.064)B

→

= −  and 

2
3 ( 0.006,0.041)B

→

= − , respectively (with the rotation angle of the node ‘2’ : 2
1 8.9oϕ∆ = −  (beam ‘1’ ), 

2
1 4.45oϕ∆ =  (beam ‘2’ ), and 2

1 2.97oϕ∆ = −  (beam ‘3’ )). For the stiffness parameters kb=0.6 and kl=1.0, 

the resultant displacement vector of the node ‘2’  is equal to (Eq.2): 
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and the new co-ordinates of the node ‘2’ are (0.837, 0.558). In turn, the displacement vectors of the node 

‘4’ in the beams ‘3’ and ‘4’ are: 4
3 (0,0)W

→

= , 4
4 (0,0)W

→

= , 4
3 (0,0)R

→

= , 4
4 (0,0)R

→

= , 4
3 (0,0)D

→

= , 

4
4 (0,0)D

→

= , 4
3 ( 0.006, 0.041)B

→

= − −  and 4
4 (0,0)B

→

= , respectively (with the rotation angle of the node ‘4’: 

4
3 2.97oϕ∆ = −  (beam ‘3’) and 4

4 2.97oϕ∆ =  (beam ‘4’)). The resultant displacement vector of the node ‘4’ 

is equal to (Eq.2): 
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and the new co-ordinates of the node ‘4’  are (1.599, 0.493). Next, the forces are determined with the aid 

of normal strains and a modulus of elasticity. For the stiffness parameter kb=0 in Eq.2, the beams behave 

as bars. The beams were removed from the lattice if the local critical tensile strain εmin was exceeded in 
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each beam. In addition, the beams were removed if both the local critical tensile strain εmin or local critical 

compressive strain εmax were exceeded in each beam. The assumption of a different ratio between the 

bending stiffness and longitudinal stiffness p=kb/l l allowed us to simulate the different Poisson’s ratio ν. 

During simulations presented in the paper, the same local critical strains were assumed for all beams 

(εmin=0.02% for tension and εmax=0.2% for compression). The following strain increments were assumed 

on the basis of initial calculations: 0.000032% (uniaxial compression) and 0.000004% (uniaxial tension 

and shear). Smaller strain increments only insignificantly influenced the results. All calculations were 

strain controlled. 

 

The 2D calculations were carried out mainly with a brittle specimen size of 100×100 mm2 (b×h) 

composed of 20000 beam elements distributed non-uniformly (α=20o, s=0.6g, g≈1.5 mm, rmax=2g). The 

maximum beam length was about 3 mm and the minimum about 0.6 mm. The modulus of elasticity of all 

beams was assumed to be E=20 GPa. The computation time with 20000 beams was about 10 hours using 

PC 3.6 GHz. 

 

3. Numerical results 
 

Figure 6 presents the change of the Poisson’s ratio ν versus the parameter stiffness ratio p=kb/kl during 

uniaxial compression with smooth horizontal edges at the beginning of deformation (the beams were not 

removed). For the stiffness parameter p=0.6, the Poisson’s ratio ν=0.2 was obtained (typical value for 

concrete). If the stiffness parameter p=0.01, the Poisson’s ratio was 0.4, and if the parameter p=0.001, the 

Poisson’s ratio was 0.5. In turn, if the parameter p>1, the Poisson’s ratio became negative (with the 

smallest value ν=-1,0 at p=10000). The behaviour of beams with smaller values of p=kb/kI corresponded 

obviously to that of bars (Kozicki and Tejchman 2003, 2005). 

 

The effect of the stiffness parameter p=kb/kl on the evolution of the global stress-strain curve σ-ε  

(vertical normal stress versus the vertical strain) and crack propagation in a brittle specimen during 

uniaxial compression with smooth edges is shown in Figs.7-10 (σ=P/b, ε=u2/h, P –  global vertical force, 

u2 – vertical displacement of the top edge). Figures 7 and 8 present the results for the case if only the 

beams subject to tension were removed at εmin=0.02%. 
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The strength and ductility increase with increasing stiffness parameter p. The material becomes elastic for 

p≥0.6 and brittle for p<0.025 (ε=0.3%). In the last case, the vertical strain corresponding to the material 

strength is about 0.03%. The cracks are predominantly vertical (parallel to the loading direction) if p≥0.3. 

In the case of p<0.1, the predominant cracks are more inclined. 

 

Figures 9 and 10 present the results for the case if the beams subject to both tension and compression 

were removed at εmin=0.02%, and εmax=0.2%. 

 

The results are similar to those in the previous case for p<0.3. The strength increases with increasing p. 

The material is brittle for p≤0.01 and p≥0.3. For p<0.3 the cracks are inclined. In turn, for p≥0.3, the main 

crack becomes horizontal (perpendicular to the loading direction). 

 

The effect of the roughness of both horizontal edges on the fracture process during uniaxial compression 

is shown in Fig.11 for p=0.6 and p=0.01 (with εmin=0.02%). The results with very rough edges (horizontal 

displacements along both edges were assumed to be zero) indicate the appearance of diagonal intersecting 

cracks and stiff wedges in the material. 

 

The results for uniaxial tension with a small notch at mid-height of the left side and smooth horizontal 

edges are demonstrated in Figs.12 and 13 for the case of εmin=0.02%. The material behaves in the elastic-

purely brittle way for all values of p. The strength increases with increasing p, and the brittleness 

increases with decreasing p. The overall vertical strain corresponding to the peak stress values is about 

0.007-0.009% (thus it is smaller than the local εmin). The crack pattern practically does not depend on the 

parameter p. The main crack is always initiated at the notch and then propagates almost horizontally 

through the specimen (Fig.13). 

 

The effect of the grid parameter s (influencing the minimum beam length and grid non-uniformity) on the 

stress-strain curve is shown for uniaxial tension in Fig.14 (smooth edges, α=20o, g≈1.5 mm, rmax=2g). 

The strength and the overall vertical strain corresponding to the peak value increase with decreasing s. 

For s=0×g (uniform distribution of beams), a horizontal crack occurs. 

 

The obtained crack patterns during uniaxial compression and extension (εmin=0.02% and p=0.6) are 

qualitatively in agreement with laboratory experiments with concrete (van Mier et al. 1995, Schlangen 

and Garboczi 1997). However, the calculated response of the material during extension is far too brittle. 
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The results of the fracture process for simple shearing are shown in Fig.15 for smooth and very rough 

edges (with εmin=0.02%, p=0.6). The main cracks are created in the direction perpendicular to the 

principal normal stress. The number and inclination of cracks depend both on the edge roughness and 

parameter p. The inclination of the main interior crack with respect to the bottom increases with 

increasing p and wall roughness. In the case of smooth edges, more pronounced cracks are created. 

 

Figure 16 describes the behaviour of the specimen with two notches under shear (with εmin=0.02%). The 

lower part of the specimen under the both notches was fixed. The horizontal displacement was prescribed 

to the upper part of the specimen. The main cracks spreading between both notches which occur during 

the process of deformation are curvilinear (p=0.6) or horizontal (p=0.01). The results with p=0.6 match 

well with laboratory experiments by Nooru-Mohamed (1992). 

 

The effect of the specimen size during uniaxial tension with one notch at the right side and smooth edges 

is demonstrated in Fig.17 (with εmin=0.02%, p=0.6). The calculations were performed with 3 different 

specimens: 50×50 mm2, 100×100 mm2 and 200×200 mm2 using 5000, 20000 and 80000 beam elements, 

respectively. Similarly as in experiments with concrete specimens (van Mier and van Vliet 2003), the 

strength increases with decreasing specimen size. The vertical strain corresponding to the strength 

increases also with decreasing specimen size. The stress fluctuations grow with decreasing specimen size. 

 

4. Conclusions 
 

The lattice model is a simple approach to the fracture behaviour in quasi-brittle materials but very useful 

in studying and understanding the phenomenon of the crack formation. Owing to it, novel (stronger and 

better) engineering materials can be developed. By using an elastic-purely brittle local fracture law at the 

particle level of the material, global softening behaviour is obtained. The lattice simulations yield a 

significant size effect in nominal strength, i.e. the strength increases with decreasing specimen size and 

increasing size of micro-structure (expressed by the beam length). The heterogeneous 2D-lattice model 

used in the paper requires for the brittle material composed of one component only 3-4 material 

parameters (p, E, εmin, εmax,) and 4 grid parameters related to the distribution, quantity and length of 

beams (g, s, α and rmax). The obtained results of crack patterns are qualitatively in agreement with 

experimental ones for concrete. However, the lattice stress-strain outcomes are too brittle. 
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The calculations with a lattice model will be continued. First, the simulations will be carried out with a 

real brittle material as concrete assuming different material parameters for cement matrix, aggregate 

grains and interfacial zones. In addition, the beam strains will be non-locally (influenced by the 

neighbouring beam strains) calculated to increase the material ductility (Kozicki and Tejchman 2006). To 

prevent the overlapping of compressed beams, special boundary elements will be introduced. Next, the 

model will be extended into 3D. The material parameters (p, E and εmin,) will be stochastically distributed 

using a Gaussian or Weibull distribution. The calculations will also be performed with reinforced 

concrete elements (Schlangen at al. 1994). The results will be directly compared with laboratory tests to 

identify the stiffness parameters and critical local strain. 
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