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Introduction

In the fields of civil and geotechnical engineering, the construc-
tion techniques are getting more and more sophisticated and often
include composite systems. Particularly, many techniques associ-
ate a granular matrix~soil, concrete! with linear or planar inclu-
sions ~geosynthetics, fibers, piles, steel rods!. Modeling the me-
chanical behavior of such systems is generally complex since the
geometry and governing mechanisms are strongly discontinuous.
Traditional finite-element methods, rooted in the concepts of con-
tinuum mechanics, may be unsuited in such cases~Villard et al.
2002!. At the same time, significant advances in discrete model-
ing methods offer some opportunities for the numerical simula-
tion of different types of composite systems~Mohammadi et al.
1998; Hentz et al. 2003!. Those methods can be used to simulate
soil-inclusion systems with respect to their discontinuous nature.

In Chareyre et al.~2002!, soil-geosynthetic systems were
simulated using the two-dimensional codePFC2D ~PFC2D
1997!. This program models bidimensional assemblies of disks
with the distinct element method~DEM!. In Chareyre et al.
~2002!, the geosynthetic inclusion was simulated by a chain of
disks, as shown in Fig. 1~a!, the strength and stiffness of the

geosynthetic in tension being related to the tensile strength and
tensile stiffness of the contacts between the disks. Although the
results obtained with this approach were valuable, this modeling
presents two important limitations. First, a roughness related to
the size of the disks is inherent in the model. It implies a very
complex constitutive behavior of the interface and prevents the
model from applying to even-faced inclusions. Second, the axial
strain must remain very small or significant voids would be cre-
ated at each contact between the disks.

The objective of this paper is to propose a model based on spar
elements@Fig. 1~b!#, adapted to the specific aspects of inclusions,
and then to couple it with a DEM code, which simulates granular
matters. The two models will interact with respect to a given
interface constitutive behavior. It is expected that this coupling
will provide a valid numerical tool for much research on soil-
inclusion systems.

In the first part, the most important aspects of the DEM code
used will be set out. In the second part, the model proposed for
the inclusions will be presented; it is denoted as the DSEM for the
dynamic spar element model. Finally, the results obtained by
simulating geosynthetic anchorages in soil will be reported. They
were obtained by modeling the inclusion with each of the con-
cepts in Fig. 1 to provide a comparison.

Distinct Element Method

In the present study, the soil is modeled using the program
PFC2D, which is an implementation of the model of Cundall and
Strack~1979!. This section briefly summarizes the method used in
PFC2D to calculate contact forces from displacements and to
determine the motion of the disks, a more detailed description
may be found inPFC2D ~1997!.

1Assistant Professor, LTDS, Ecole Centrale de Lyon, 36 Ave. Guy de
Collongue, 69134 Ecully, France. E-mail: bruno.chareyre@ec-lyon.fr

2Assistant Professor, LIRIGM, Joseph Fourier’s Univ. of Sciences,
38041 Grenoble, Cedex 9, France.

Note. Associate Editor: Jin Y. Ooi. Discussion open until December 1,
2005. Separate discussions must be submitted for individual papers. To
extend the closing date by one month, a written request must be filed with
the ASCE Managing Editor. The manuscript for this paper was submitted
for review and possible publication on April 30, 2003; approved on
September 16, 2004. This paper is part of theJournal of Engineering
Mechanics, Vol. 131, No. 7, July 1, 2005. ©ASCE, ISSN 0733-9399/
2005/7-689–698/$25.00.

JOURNAL OF ENGINEERING MECHANICS © ASCE / JULY 2005 / 689

8LMW�QEXIVMEP�QE]�FI�HS[RPSEHIH�JSV�TIVWSREP�YWI�SRP]��%R]�SXLIV�YWI�VIUYMVIW�TVMSV�TIVQMWWMSR�SJ�XLI�%QIVMGER�7SGMIX]
SJ�'MZMP�)RKMRIIVW��8LMW�QEXIVMEP�QE]�FI�JSYRH�EX�LXXT���H\�HSM�SVK����������%7')�����������������������



Contact Model

The contact model relates the relative displacement to the force
acting at the contact between two disks. In this study, the contact
model consists of a linear stiffness model and a Coulomb-like slip
model~Fig. 2!. The stiffness model is defined by two parameters:
normal stiffnesskn

* and tangential stiffnesskt
* . The normal and the

tangential components of the contact force are proportional, re-
spectively, to the overlap between two disks in contact and to the
tangential displacement at contact. The tangential component of
the contact force is limited in magnitude with respect to the
Coulomb-like slip model, with friction anglem* .

Motion

The disks interact with each other via contact forces. The method
to calculate the displacement from the resultant force and torque
acting on a disk is summarized below. The angle of rotation of the
disk is denoted asu3. yi represents the position vector of the
center of the disk. Newton’s second law of motion relates the
translational and rotational accelerations to the resultant force and
torque,f i andM3

ÿi = F i/mD s1d

ü3 = M3/ID s2d

Here, mD and ID denote, respectively, the mass and moment of
inertia of the disk. During a simulation, the movement of each

disk is traced step-by-step, at time intervalsDt. ÿi and ü3 are
integrated overDt following an explicit centered finite-difference
scheme, as in the set of equations below@Eqs. ~3!–~6!#. In the
equations, a subscript after a bracket denotes the time step with
respect to which the expression is considered.

bẏict+Dt/2 = bẏict−Dt/2 + bÿict 3 Dt s3d

bu̇3ct+Dt/2 = bu̇3ct−Dt/2 + bü3ct 3 Dt s4d

fyigt+Dt = fyigt + fẏigt+Dt/2 3 Dt s5d

fu3gt+Dt = fu3gt + bu̇3ct+Dt/2 3 Dt s6d

When all positions are calculated for timet+Dt, contact forces
may be calculated for the next calculation cycle.

Setting the value ofDt in Eqs.~3!–~6! and damping the equa-
tions of motion are two essential issues of the DEM. For the case
of a disk assembly, those aspects are detailed inPFC2D ~1997!
and will not be developed in this paper. However, modeling with
dynamic spar elements raises similar questions. The methods pro-
posed below for settingDt and damping the equations of motion
in the DSEM can give an overview of what is done for disks.

Dynamic Spar Element Model

This section is dedicated to the presentation of the dynamic spar
element model and the coupling with the DEM code. The DSEM
was initially designed specifically for the modeling of geosyn-
thetic sheets, which have generally no bending strength. How-
ever, it is believed that the DSEM could equally apply to other
types of inclusions. In this perspective, the formulation proposed
here can handle problems in which the bending strength has to be
considered.

In the DSEM, the motion of the spar elements is determined in
the same manner as in the DEM, and the soft contact approach is
adopted for the interaction between the disks and the inclusion.
Consequently, the DSEM may be viewed as an implementation of
the DEM, and the formulation detailed in this section is partly
based on the concepts developed in the DEM-related publications
of P. A. Cundall. For the sake of simplicity, however, it will be
considered in this paper that the DEM and DSEM are two differ-
ent numerical models. The DSEM’s specificities are mainly due to
the shape and the deformability of the elements, the type of con-
nexion between them, and the inertial model.

Discretization

The inclusion is represented by a set of spar elements connected
by nodes, as in Fig. 3~a!. The length of the elements is considered
variable, the axial deformation being accounted for by a variation
of the distances between the nodes; the flexion of the inclusion is
represented by rotations at the nodes; and the flexion of an indi-
vidual element is not considered. In the next part, the length of
the elements will be related to the axial forces, and the rotation at
nodes to the bending moments. From the inertial viewpoint, the
inclusion is treated as a set of lumped masses coinciding with the

Fig. 1. Two different concepts to model soil-inclusion systems with
the distinct element method~DEM!: ~a! full-DEM modeling or
~b! DEM–dynamic spar element model modeling. The disks in white
represent the soil.

Fig. 2. Contact model

Fig. 3. Notation of ~a! the nodes and spar elements and~b! the
rheological model for a five-noded inclusion
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nodes. This rheological model is illustrated in Fig. 3~b!. The in-
teraction between the inclusion and the granular matter will be
treated with the soft contact approach. It implies that the disks
and the spar elements will be allowed to overlap with one another
at contact points. Hence it is necessary to consider the thicknesse
of the spar elements, otherwise two disks could get in contact and
overlap with one another across the inclusion. In the case of the
flexion at a node, the evenness of the convex side is ensured with
a circular arc centered on the node and of radiuse/2 ~see Fig. 4!.
Following the same principle, the shape of the ends of the inclu-
sion is defined by semicircles.

Some notations used in the rest of the paper are defined in
Figs. 3 and 4. An inclusion is represented byNb elements. The

elements are denoted ashb1, . . . ,bNb
j, the nodes ashx1, . . . ,xNb+1j,

and their respective masseshm1, . . . ,mNb+1j. xi
q represents the co-

ordinate vector of nodexq andlq the distance fromxq to xq+1 ~with
1øqøNb!. The orientation of an element is defined byti

q, the
unit vector pointing fromxq to xq+1. ui

q is introduced as obtained
by an anticlockwise rotation ofti

q through 90°. The rotation at
nodexq ~xq+1 in Fig. 4!, denoted asdq sdq+1d, is defined by the
angle betweenti

q and ti
q+1.

Motion

Finite-Difference Scheme
In the model, the features that have inertial effects are the lumped
masses added to the nodes only. The dynamic laws are applied to
them to calculate their motion. Due to the punctual nature of the
distribution of mass, the rotation of the nodes has no inertial
effects, the translational motion alone can be determined. Actu-
ally, it does not restrain any degrees of freedom. The rotation of a
spar element is allowed by different translational motions of its
nodes.

The position of each node is determined step-by-step at time
intervals Dt with a centered finite-difference scheme. Knowing
the resultant force vectorRi

q acting on nodexq, Newton’s second
law gives its translational acceleration as

ẍi
q = Ri

q/mq s7d

If the acceleration and velocity are assumed to be constant over a
time step, the velocity att+Dt /2 is given by Eq.~8!, and the
position att+Dt by Eq. ~9!.

bẋi
qct+Dt/2 = bẋi

qct−Dt/2 + bẍi
qct 3 Dt s8d

bxi
qct+Dt = bxi

qct + bẋi
qct+Dt/2 3 Dt s9d

Damping
If the behavior is assumed to be of the elastic type, the energy
supplied to the inclusion may not dissipate. Therefore damping
the equations of motion may be necessary in some cases to arrive
at a static or steady state solution. The local nonviscous damping
proposed for spar elements is similar to the one described in
Cundall~1987!. A damping force term is introduced in Eq.~7! via
the dimensionless coefficient of dampingx. The damped accel-
eration in directioni is calculated in Eq.~10!, wherex lies be-
tween zero~no damping! and one~no acceleration!.

ẍsid
q = bRsid

q − x · uRsid
q u · sgnsẋsid

q dc/mq s10d

Calculating the Resultant Forces Applied on Nodes

As stated in Fig. 5, several types of loads contribute to the result-
ant force vectorRi

q acting on nodexq. The contributions due to
internal loads will be distinguished from those due to external
loads. The internal loads are the axial forcesTq−1 and Tq in the
adjacent elements, the bending momentsB3

q−1 and B3
q+1 at nodes

xq−1 and xq+1, and the gravitational force. The contributions of
those loadings to force vectorRi

q are denoted, respectivelyRi
qsTd,

Ri
qsMd, and Ri

qsGd. External loads are those generated at the con-
tacts between disks and spar elements. Considering the set

hy1,y2, . . . ,yNc
j of disks in interaction with nodexq, Ri

p→qsCd will
denote the contribution toRi

q that is due to the forcef i
p→q applied

by disk yp ~with 1øpøNc!.
The method to calculate the contributions listed above is de-

tailed in this section. Finally,Ri
q will be calculated by summing

all terms in Eq.~11!.

Ri
q = Ri

qsTd + Ri
qsMd + Ri

qsGd + o
p=1

p=Nc

Ri
p→qsCd s11d

Internal Loads

Axial Load. The axial force in a spar element is calculated
from the distance between the nodes, with respect to the consti-
tutive behavior assumed. In the present work, spar elements are
considered as tension-only features and a linear relation is as-
sumed between the tensionTq and axial strain«q in elementbq.
This relation is given in Eq.~12!, whereJ=stiffness of the inclu-
sion.«q is obtained as lnslq/ l0

qd, wherelq and l0
q=respectively, the

current length and the length at repose ofbq. In Eq. ~12!, tensile
forces are represented by positive values. This relation between
Tq and«q is not inherent in the method. Reaction to compression,
nonlinear stiffness, or different stiffness values in charge and dis-
charge could equally well be assumed.

Fig. 4. Geometry and notations

Fig. 5. Types of load participating in the resultant force acting
on nodexq
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Tq = maxbJ · «q;0c s12d

The resultant force vectorRi
qsTd acting on nodexq is the sum of

the tensile force vectors in elementsbq−1 andbq, so that

Ri
qsTd = Tq · ti

q − Tq−1 · ti
q−1 s13d

Bending Moments. If it were assumed that a bending moment
B3

q is generated by the rotationdq at nodexq, then it would result
in forces applied on nodesxq−1 andxq+1. The relation betweendq

and B3
q may be defined as in Eq.~14!, considering the joints

between elements as rotational springs of stiffnesskM
q . To simu-

late a beam with moment of inertiaI and Young’s modulusEy, the
equivalent rotational stiffness would be taken equal to
2·Ey·I / sl0

q−1+ l0
qd for nodexq.

B3
q = − dq ·kM

q s14d

Finally, considering the bending moments at nodesxq−1 andxq+1

this time, the resultant force vector acting on nodexq is

Ri
qsMd = B3

q−1 ·ui
q−1/lq−1 + B3

q+1 ·ui
q/lq s15d

Body Forces Body forces, due gravitational acceleration, may
be considered. In this case, the gravitational force vectorRi

qsGd

acting on nodexq is defined in Eq.~16!, wheremq is the mass of
the node andgi is the gravitational acceleration vector.

Ri
qsGd = mq ·gi s16d

External Loads

Detection of the Contacts To calculate external loads, the
contacts existing between the disks and the inclusion must be
known. It is considered that a contact exists when a disk overlaps
a part of the inclusion. In the algorithm, the list of contacts is
updated at each calculation cycle. The procedure to test a contact
and to calculate the contact force is summarized below, consider-
ing a general disk denoted as disky. r denotes the radius of the
disk andyi the position vector of its center.

Two different types of contacts may exist~see Fig. 6!. First, let
us consider the contact between disky and spar elementbq ~mode
I!. Introducing lineD which passes through nodesxq and xq+1,
and the coordinatesyi8 obtained after an orthogonal projection of
yi on D, the algebraic distance betweeny andbq is defined as

sdndI = uyi − yi8u − e/2 − r s17d

The disk is considered effectively in contact withbq if both con-
ditions are verified in the set of equations~18!. This being the
case, the unit normal of the contact is introduced as the unit
vectorni pointing fromyi8 to yi. Vectorvi, indicating the tangen-
tial direction, is taken as equal toti

q.

0 , ti
qsyi − xi

qd , lq

sdndI , 0 s18d

As shown in Fig. 6, contacts of the second type~mode II! may
occur if the distance between the disk and a node is less thane/2.
This condition is checked for nodexq by calculating the algebraic
distance between the disk and the circle of radiuse/2 centered on
xq as

sdndII = uyi − xi
qu − e/2 − r s19d

Then, a contact in mode II exists if

sdndII , 0 s20d

If so, the unit normalni points fromxi
q to yi and the tangential

direction is defined by the unit vectorvi, perpendicular toni and
oriented as the numbering of the elements. Note that both mode I
and mode II@i.e., Eqs.~18! and ~20!# may be satisfied simulta-
neously. Mode I is considered by default in that case.

Contact Laws. An expression of the contact force vectorf i

applied by the disk on the inclusion is proposed now. It is as-
sumed that before failure, the contact is equivalent to springs in
both directions defined in the previous paragraph.kn and kt de-
note, respectively, the normal and the tangential stiffness. The
normal componentfn of the contact force is defined in Eq.~21!,
wheredn representssdndI or sdndII .

fn = dn ·kn s21d

The shear componentf t of the shear force is incremented at each
time step on the base of the tangential displacement increment
Ddt at the contact. Assuming that the displacement of the inclu-
sion varies linearly between two nodes,Ddt is obtained in Eq.
~22! and f t in Eq. ~23!.

Ddt = fs1 − jdẋi
q + j · ẋi

q+1 − ẏi − u̇3 · r · ti
qgti

q 3 Dt

j = Huyi8 − xi
qu/lq for contacts in mode I

0 for contacts in mode II
J s22d

Df t = kt · Ddt s23d

The shear strength of the contact is defined by a Coulomb-like
slip model with friction anglem. At each time step, the contact is
checked for slip condition by calculatingf t

max, the maximum al-
lowable magnitude off t, and by comparing it to the sumf t+Df t.
That is done in Eq.~24!.

sf tdN+1 = sgnfsf tdN + sDf tdNg 3 minfsf t
maxdN+1; usf tdN + sDf tdNug

f t
max= ufnu · tanm s24d

Finally the contact force vectorf i is obtained as

f i = fn ·ni + f t ·vi s25d

When a slip occurs, it is possible for the disk to change the spar
element it is in contact with~or the mode of the contact!. That is

Fig. 6. Definition of the disk-inclusion contacts
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accounted for in the algorithm. The shear component of the con-
tact force is not affected~i.e., is not set to zero!, ni and vi are
simply updated with respect to the new configuration of the con-
tact. With this condition,f i is defined as a continuous function of
the relative displacement. Note that the simple laws that describe
the constitutive behavior of disk-inclusion contacts are not intrin-
sic to the method. More complex laws of behavior could replace
Eqs.~21! and ~23!.

Distributing the Contact Forces on the NodesConsidering
the contact forcef i applied by the disk in contact with spar ele-
mentbq ~mode I!, it is assumed that the forces acting on nodesxq

andxq+1 are as defined in the set of equations~26!. These equa-
tions are based on the analogy with an elastic beam resting on two
supports. They also apply to mode II,j is equal to 0 andf i acts
directly on nodexq in that case.

Ri
qsCd = f is1 − jd

Ri
q+1sCd = f i · j s26d

Critical Time Step
The time step has to be less than a critical value for a centered
finite-difference scheme to produce a stable solution. The critical
time step is related to the minimum eigenperiod of the total sys-
tem. It is estimated following the same procedure as in Hart et al.
~1988!.

A value of the critical time step is found for each nodexq by
applying Eq.~27! separately to each degrees of freedom and as-
suming that the degrees of freedom are uncoupled.

Dtcrit
q = Îmq/K̄sid

q s27d

In Eq. ~27!, K̄sid
q is the equivalent translational stiffness in direc-

tion i. It is computed as follows. First, consider the relation in Eq.
~28! between the force increment vectorDRi

q acting on nodexq

and the displacement increment vectorDxi
q. In the equations

below, the superscriptp→q denotes variables related to the con-
tact between diskyp and nodexq.

DRi
q = DRi

qsTd + DRi
qsMd + DRi

qsGd + o
p=1

p=Nc

DRi
p→qsCd s28d

with

DRi
qsTd = − J

Dx j
q · t j

q−1

lq−1 ti
q−1 − J

Dx j
q · t j

q

lq
ti
q

DRi
qsMd = −

Dx j
q ·u j

q−1

slq−1d2 kM
q−1 ·ui

q−1 −
Dx j

q ·u j
q

slqd2 kM
q+1 ·ui

q

DRi
qsGd = 0

DRi
p→qsCd = − s1 − jp→qd2skt · Dx j

q ·v j
p→q ·vi

p→q

+ kn · Dx j
q ·n j

p→q ·ni
p→qd

Next, considering the matrix form~29! of the relation between
DRi

q and Dxi
q, the diagonal termsKii

q of the stiffness matrix are

taken as approximations ofK̄sid
q si =1,2d. ExpressingKii

q from Eq.

~28!, Eq. ~30! is obtained forKp sid
q .

FDR1
q

DR2
qG = − FK11

q K12
q

K21
q K22

q GFDx1
q

Dx2
qG s29d

K̄sid
q = Kii

q = Kii
qsTd + Kii

qsMd + o
p=1

p=Nd

Kii
p→qsCd s30d

where

Kii
qsTd = Jbstsid

q−1d2/lq−1 + stsid
q d2/lqc

Kii
qsMd = kM

q−1susid
q−1/lq−1d2 + kM

q+1susid
q /lqd2

Kii
p→qsCd = s1 − jp→qd2bktsvsid

p→qd2 + knsnsid
p→qd2c

Finally, a value of the critical time step is computed from Eqs.
~27! and~30! for each degrees of freedom and for each node. The
global critical time step is taken to be the minimum of all values,
and the actual time step in the simulation is taken as a fraction of
it.

Distinct Element Method–Distinct Spar Element
Method Coupling

Basic Concept
The DSEM algorithm has been coupled with the DEM code with
the concept of Fig. 7. At the beginning of each time step, the
external loads on the inclusion are determined with respect to the
positions and velocities of all elements. Next, the motion of
DSEM elements is computed from Eq.~10!. At this stage, the
half-cycle concerning the DSEM is finished. Then, the disk-
inclusion contact forces are introduced in the DEM program as a
set of forces and moments acting on the disks. This procedure is
equivalent to replacing, respectively, Eqs.~1! and~2! by Eqs.~31!
and ~32!. Finally, the positions of the disks are updated for the
next calculation cycle.

ÿi
p = sFi

p − f i
p→qd/mD

p s31d

ü3
p = sM3

p − f t
p→q · rp ·ni

p→q ·ui
qd/ID

p s32d

Critical Time Step
A global value of the critical time step is required for the coupled
simulations. In the DEM code, the critical time step associated to

Fig. 7. Coupling a distinct element method code and the distinct spar
element method: Calculation cycle
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a disk is estimated on the base of the stiffness of the contacts
acting upon it. The procedure, quite similar to that described in
the previous section, is detailed inPFC2D ~1997!. By including
the stiffness of the disk-inclusion contacts in this procedure, the
critical time step related to the disks can be obtained. It is com-
pared to the one related to the DSEM elements, and the minimum
of the two is taken as the global critical time step.

Central Processing Unit Time
One of the main advantages of using circular particles in DEM
codes is a reduced CPU time. Thus it is not surprising that the
Central Processing Unit~CPU! time required for a DSEM ele-
ment is much more than the one required for a circular particle. In
our computations, we found that a DSEM element is equivalent to
10 traditional DEM elements in terms of CPU time. This signifi-
cant difference has two main origins. The first one, intrinsic in
the method, is the more complex shape and constitutive behavior
of the DSEM elements. The second one is the spatial search
algorithm~based on a cell-space subdivision!, probably less opti-
mized in the DSEM than in the commercial DEM code used. This
disadvantage has not been considered a major issue, however. In
most applications, the number of DSEM elements should be low
compared with the number of DEM elements, so that the comput-
ing of DSEM elements represents a minor part of the global CPU
time.

Simulating Pullout Tests with Two Models
for the Inclusion

The results obtained by simulating pullout tests on straight an-
chorages are reported in this section. They are part of a more
general study on geosynthetic anchorages in soil@see Chareyre et
al. ~2002!#. An inclusion without bending strength was included
in a breakable random packing whose geometry and boundary
conditions are defined in Fig. 8. The tensile stiffnessJ of the
inclusion was set to 103 kN m−1. The inclusion was simulated
alternatively with disks or with spar elements to provide a com-
parison.

Procedure

In the modeling, the soil was simulated as a random packing of
clusters, each cluster being made of two disks connected in a rigid
manner~their radii are defined in Table 1!. The assembly was
generated with an initial porosity equal to 0.2. The density
of the clusters was set to 20 kN m−2, the angle of friction between
the clusters was set to 38.7°, the normal stiffnesskn

* was set
to 53104 kN m−1, and the tangential stiffnessks

* was set to
2.53104 kN m−1. The macroscopic angle of frictionws of such
assembly has been estimated by simulating biaxial compressions,
and it was found equal to 41°s±0.5°d. The method to determine
ws is detailed in Chareyre and Villard~2002!.

The soil mass was set in place between three rigid walls, as in
Fig. 8, and submitted to gravitational acceleration. The properties
of the cluster-wall contacts were the same as those defined in the
previous paragraph. Pullout tests were simulated with a constant
velocity, which must be low enough in order to avoid dynamic
effects. It was set to 0.002 m/s after several trials.

During the pullout process, the soil above the inclusion applies
a vertical load only, and the resistance to pullout is provided by
the interaction at the lower soil-inclusion interface. This interac-
tion is represented by two forcesQn andQt, calculated by sum-
ming, respectively, the normal components and the tangential
components of the contact forces along the lower side of the
inclusion. Here “normal” and “tangential” refer to the local ori-
entation of the inclusion. The mobilized angle of macroscopic
friction wm is defined as arctansQt /Qnd. In the following, the re-
sults will be presented in terms of the evolution ofwm during the
pullout simulations for different values of the anglem of contact
friction at the interface.

Table 1. Definition of the Clusters Used for the Soil Model

Number of clusters

Radius of the disks in the cluster

Disk 1
~mm!

Disk 2
~mm!

400 11.60 10.44

1,600 5.80 5.22

Fig. 8. Geometry and boundary conditions of the pullout test
simulated

Fig. 9. Initial state of the anchorage in the full-distinct element
method simulation

Fig. 10. Evolution of the angle of mobilized friction as a function
of the displacement and the angle of contact friction at the interface
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Results

Full-Distinct Element Method Simulations

Fig. 9 represents the initial state of the model when the inclusion
was simulated using a set of 68 disks of radius 8.15 mm. Ap-
proximately 2,000 clusters were used to simulate the soil, as de-
fined in Table 1.

The evolution ofwm is reported in Fig. 10 with respect to the
pullout displacementU and the angle of contact frictionm. The
initial value of wm is close to zero. It rises gradually until it
reaches a peak, followed by a strain softening transition. The
angle of peak friction depends onm, the higher it is set, and the
higherwm is obtained at peak.

After the peak, some important fluctuations ofwm are notice-
able. With the lower values ofm, in particular with m=11.3°,
those fluctuations seem to have a period equivalent to the diam-
eter of the disks simulating the inclusion. For a better understand-
ing of this feature, the orientation of the soil-inclusion contacts
along the lower interface was analyzed. The results obtained for
the casem=11.3° are presented in Fig. 11. Let us consider all the
contacts between the lower side of the inclusion and the soil.lm

is introduced as the mean inclination of the contact normals with
respect to the vertical~lm.0 for a clockwise inclination!. In Fig.
11, the evolution oflm highlights a collective behavior of the
contacts, with the same periodicity aswm. Moreover,wm appears
to be very close tolm+m, thus demonstrating the role of the
collective evolution in the fluctuations ofwm.

It is suggested that when the model is generated, the cluster
assembly representing the soil tends to fit into the periodic rough-
ness of the inclusion. A mechanism similar to that of Fig. 12~but
with a random packing! is enabled then. Note that the tensile
stiffness of inclusion was high compared to the load applied, and
that its tensile strain was always less than 0.2%. A more deform-

able inclusion would probably prevent any global periodicity
since the disks of the inclusion could not move simultaneously.

No periodic variation inwm is noticeable withm=30° andm
=38.7°. As seen in Fig. 13, a high value ofm produces displace-
ments of soil elements below the inclusion. It denotes a shear
failure within the granular assembly. That is why the periodicity
vanishes in that case. Indeed, shearing the random packing of soil
elements cannot generate any periodic mechanism.

Coupled Distinct Element Method-Distinct Spar
Element Method Simulations

The results obtained by modeling the inclusion with spar elements
are presented in this section~the soil being modeled exactly in the
same way!. Note that, in this problem, it was not necessary to
damp the equations of motion for the DSEM elements. A suffi-
cient damping is provided by the friction between the inclusion
and the surrounding elements. Fig. 14 demonstrates that the co-
efficient of damping has no influence on the results in that case.

Fig. 15 shows the evolution ofwm in the coupled simulation
for different values ofm. There is no strain softening. Whenm
ø30°, the curves show a gradual increase inwm until a constant
residual value~however, wm drops sporadically during the re-
sidual phase!. With mù38.7°, wm fluctuates during the residual
phase. Nevertheless, the fluctuations are smaller than those ob-
tained with the previous modeling, andwm can be considered
almost constant.

As seen in Fig. 16, the occurrence of fluctuations with the
highest values ofm is correlated with a shear deformation of the

Fig. 11. Comparison between the mean angle of inclination of the
contacts’ normal and the mobilized friction angle

Fig. 12. Principle of the periodic evolution of the contacts at the
soil-inclusion interface

Fig. 13. Displacement of the disks forU from 0 to 0.05 m

Fig. 14. Evolution of the mobilized angle of friction in the
distinct element method-distinct spar element method coupling with
m=21.8° for different values of the damping coefficient
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soil below the inclusion. Note that there are some failures in the
soil when m=38.7°, although the angle of internal friction is
higher thanm sws=41°d. In fact, ws is a mean macroscopic value
and does not represent the effective strength at the granular scale.
The interaction with the inclusion can then cause the instability of
soft spots in the microstructure, particularly ifm is inferior but
close tows.

In order to understand the origin of the temporary diminution
of wm whenm=11.3–30°, the mean unbalanced ratio~m.u.r.! was
compared towm. The m.u.r. is computed on the disks as the mean
magnitude of the resultant force@Fi in Eq. ~1!# divided by the
mean magnitude of the contact forces. It tends to zero when the
evolution of the system is quas-istatic. As seen in Fig. 17 for the
casem=21.8°, the decreases inwm are correlated with some peaks
of the m.u.r. These peaks denote small dynamic events related to
contact failures in the soil. It shows that the drops inwm are due
to local reorganizations of the disks near the interface.wm quickly
increases back tom as soon as the disks stabilize.

Macroscopic Versus Microscopic Peak Friction
The maximum valuewmax of wm ~considered as the macroscopic
friction angle! is plotted as function of the angle of local friction
m in Fig. 18. The micro–macro relation betweenm and wmax is
highly dependent on the model used. With the DSEM, there is a
very good equivalence between the microscopic and the macro-
scopic scale, except form=45°. With the full-DEM model, the

micro-macro relation is more complex. The roughness of the in-
terface causes an increase in the global friction, and this increase
depends onm.

Fig. 17 shows with both the DEM and the DSEM thatwmax

cannot exceed a maximum value, which is slightly higher thanws

~angle of internal friction of the soil!. A maximum value equal to
ws could have been expected. But actually, when a shear band of
finite thickness develops in the soil below the inclusion, the ver-
tical stress at the depth of the sheared zone is higher than the
normal stress at the soil-inclusion interface. The shear strength of
the soil at the interface is increased then, and the angle of mobi-
lized friction can slightly exceedws.

Conclusions

A numerical model named DSEM has been proposed to simulate
the deformation of a stressed inclusion in two dimensions and its
interaction with a granular matter. With the concepts of the
DSEM and DEM algorithms being very similar, it was possible to
couple the DSEM with the distinct element codePFC2D, thus
enabling us to simulate the soil-inclusion interaction in composite
systems.

Pullout tests on straight anchorages were simulated. Some re-
sults obtained with the coupled DEM-DSEM model have been
reported and compared with the results of a previous modeling,
based on the DEM only, where the inclusion was simulated by a
chain of disks. The main difference between those two types of
modeling was the shape of the interface between the soil and

Fig. 15. Evolution of the mobilized angle of friction in the distinct
element method-distinct spar element method coupling as function
of the displacement and the interface contact friction

Fig. 16. Displacement of the disks forU from 0 to 0.02 m

Fig. 17. Comparison between the evolution ofwm and the evolution
of the mean unbalanced force

Fig. 18. Global versus local friction angle at the soil-inclusion
interface
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inclusion, which was locally even in the first case and periodically
rough in the second. Whatever the method of modeling is, the soil
and the inclusion can interact with two different mechanisms,
depending on the local friction anglem at the interface. Whenm
is low, the inclusion is pulled-out without notable deformation in
the soil. Whenm is high enough, a shear band parallel to the
geosynthetic develops in the soil. Considering those two mecha-
nisms, only the calculations with the DSEM can provide in both
cases some realistic results in terms of global friction. Indeed,
whenm is low and the inclusion simulated by disks, the interface
roughness generates undesirable periodic oscillations of high
magnitude in the global friction.

In case the inclusion is rough~which is generally the case!, the
DSEM is probably not well suited to study micromechanically the
soil-inclusion interaction. However, coupled DEM-DSEM models
could be appropriate when the global behavior of composite
structures is to be studied. In this case, the effect of the actual
roughness may be taken into account globally in the value ofm.
In the coupled model, the angles of local and global interface
friction are almost equal. This is an important advantage of
DSEM compared to DEM. If the global behavior of a soil-
inclusion structure is to be simulated, the value ofm in the model
can be set directly from macroscopic measurements alone~e.g.,m
can be taken equal to the angle of macroscopic friction obtained
from shear tests on soil-geosynthetic interfaces!. This approach
has been used to simulate geosynthetic anchorages with complex
shapes. The results are consistent with experimental data, and
practical conclusions for design can be drawn from them. Those
results will be reported in a future paper.

The concept of the DSEM can be extended to three-
dimensional problems by considering a three-dimensional loading
on each element. Coupling the DEM and the DSEM in 3D would
enable a micromechanical approach for studying different soil
reinforcement techniques~fibers, mesh elements, geogrids!.

Notation

The following symbols are used in this paper:
B3 5 bending moment at a node;
b 5 label of a bar;
D 5 axis of spar element;

d̄ 5 displacement at contact;
e 5 thickness of the inclusion;

Ey 5 Young modulus;
F i 5 resultant force vector acting on a disk;
f i 5 disk-inclusion contact force;

f t
max 5 threshold value of the shear force at contact;
gi 5 gravitational acceleration vector;
ID 5 moment of inertia of diskyn;
I 5 moment of inertia of a beam;
J 5 axial stiffness of the inclusion;

K̄ 5 translational stiffness;
Kij 5 terms of the stiffness matrix;
kn 5 normal stiffness at disk–inclusion contacts;
kn

* 5 normal stiffness at disk–disk contacts;
kt 5 tangential stiffness at disk–inclusion contacts;
kt

* 5 tangential stiffness at disk-disk contacts;
kM 5 rotational stiffness of a node;

l 5 length of a spar element;
l0 5 length at repose of a spar element;

M3 5 resultant moment acting on a disk;

m 5 mass of a node;
mD 5 mass of a disk;
Nb 5 number of spar elements;
Nc 5 number of disks interacting with a node;
ni 5 unit normal of the current contact;
Q 5 force of lower interface interaction;
Ri 5 resultant force vector acting on a node;
r 5 radius of a disk;
t 5 time;

T 5 axial load;
ti 5 unit vector parallel toD;
U 5 pullout displacement;
ui 5 unit vector perpendicular toD;
vi 5 unit tangent of a contact;
xi 5 position vector of a node;
x 5 label of a node;
yi 5 position vector of the center of a disk;
y 5 label of a disk;

yi8 5 orthogonal projection ofyi on D;
Dtcrit 5 critical time step;

dn 5 angle of deflection at nodexn;
«n 5 axial strain in elementbn;
u3 5 angle of rotation of a disk;
lm 5 mean angle of inclination of the interface contact

normals;
m 5 friction angle at disk–inclusion contacts;

m* 5 friction angle at disk-disk contacts;
j 5 factor of influence of a contact;

ws 5 internal friction angle of the disk assembly;
wm 5 angle of mobilized interface friction;

wmax 5 angle of peak interface friction; and
x 5 coefficient of damping.

Subscripts

i , j 5 integer indices equal to 1 or 2;
n 5 normal component; and
t 5 tangential component.

Superscripts

C 5 related to contact forces;
G 5 related to gravitational forces;
M 5 related to bending moments;

p,q 5 positive integer exponents; and
T 5 related to tensile loads.
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