"""
Import geometry from various formats ('import' is python keyword, hence the name 'ymport').
"""
from yade.wrapper import *
from yade import utils
from yade._ymport import *
from yade.minieigenHP import *
[docs]
def textExt(fileName, format='x_y_z_r', shift=Vector3.Zero, scale=1.0, attrs=[], **kw):
r"""Load sphere coordinates from file in a format selected by the ``format`` argument, returns a list of corresponding bodies; that may be inserted to the simulation with O.bodies.append().
:param str filename: file name
:param str format: selected input format. Supported ``'x_y_z_r'``(default), ``'x_y_z_r_matId'``, ``'x_y_z_r_attrs'``
:param [float,float,float] shift: [X,Y,Z] parameter moves the specimen.
:param float scale: factor scales the given data.
:param list attrs: attrs read from file if export.textExt(format='x_y_z_r_attrs') were used ('passed by reference' style)
:param \*\*kw: (unused keyword arguments) is passed to :yref:`yade.utils.sphere`
:returns: list of spheres.
Lines starting with # are skipped
"""
infile = open(fileName, "r")
lines = infile.readlines()
infile.close()
ret = []
for line in lines:
data = line.split()
if (data[0] == "#format"):
format = data[1]
continue
elif (data[0][0] == "#"):
continue
if (format == 'x_y_z_r'):
pos = Vector3(float(data[0]), float(data[1]), float(data[2]))
ret.append(utils.sphere(shift + scale * pos, scale * float(data[3]), **kw))
elif (format == 'x_y_z_r_matId'):
pos = Vector3(float(data[0]), float(data[1]), float(data[2]))
ret.append(utils.sphere(shift + scale * pos, scale * float(data[3]), material=int(data[4]), **kw))
elif (format == 'id_x_y_z_r_matId'):
pos = Vector3(float(data[1]), float(data[2]), float(data[3]))
ret.append(utils.sphere(shift + scale * pos, scale * float(data[4]), material=int(data[5]), **kw))
elif (format == 'x_y_z_r_attrs'):
pos = Vector3(float(data[0]), float(data[1]), float(data[2]))
s = utils.sphere(shift + scale * pos, scale * float(data[3]), **kw)
ret.append(s)
attrs.append(data[4:])
else:
raise RuntimeError("Please, specify a correct format output!")
return ret
[docs]
def textFacets(fileName, format='x1_y1_z1_x2_y2_z2_x3_y3_z3', shift=Vector3.Zero, scale=1.0, attrs=[], **kw):
r"""Load facet coordinates from file in a format selected by the ``format`` argument, returns a list of corresponding bodies; that may be inserted to the simulation with O.bodies.append().
:param str filename: file name
:param str format: selected input format. Supported ``'x1_y1_z1_x2_y2_z2_x3_y3_z3'``(default), ``'x1_y1_z1_x2_y2_z2_x3_y3_z3_matId'``, ``'id_x1_y1_z1_x2_y2_z2_x3_y3_z3_matId'`` or ``'x1_y1_z1_x2_y2_z2_x3_y3_z3_attrs'``
:param [float,float,float] shift: [X,Y,Z] parameter moves the specimen.
:param float scale: factor scales the given data.
:param list attrs: attrs read from file ('passed by reference' style)
:param \*\*kw: (unused keyword arguments) is passed to :yref:`yade.utils.facet`
:returns: list of facets.
Lines starting with # are skipped
"""
infile = open(fileName, "r")
lines = infile.readlines()
infile.close()
ret = []
for line in lines:
data = line.split()
if (data[0] == "#format"):
format = data[1]
continue
elif (data[0][0] == "#"):
continue
if (format == 'x1_y1_z1_x2_y2_z2_x3_y3_z3'):
V1 = Vector3(float(data[0]), float(data[1]), float(data[2]))
V2 = Vector3(float(data[3]), float(data[4]), float(data[5]))
V3 = Vector3(float(data[6]), float(data[7]), float(data[8]))
ret.append(utils.facet((shift + V1 * scale, shift + V2 * scale, shift + V3 * scale), **kw))
elif (format == 'x1_y1_z1_x2_y2_z2_x3_y3_z3_matId'):
V1 = Vector3(float(data[0]), float(data[1]), float(data[2]))
V2 = Vector3(float(data[3]), float(data[4]), float(data[5]))
V3 = Vector3(float(data[6]), float(data[7]), float(data[8]))
ret.append(utils.facet((shift + V1 * scale, shift + V2 * scale, shift + V3 * scale), material=int(data[9]), **kw))
elif (format == 'id_x1_y1_z1_x2_y2_z2_x3_y3_z3_matId'):
V1 = Vector3(float(data[1]), float(data[2]), float(data[3]))
V2 = Vector3(float(data[4]), float(data[5]), float(data[6]))
V3 = Vector3(float(data[7]), float(data[8]), float(data[9]))
ret.append(utils.facet((shift + V1 * scale, shift + V2 * scale, shift + V3 * scale), material=int(data[10]), **kw))
elif (format == 'x1_y1_z1_x2_y2_z2_x3_y3_z3_attrs'):
V1 = Vector3(float(data[0]), float(data[1]), float(data[2]))
V2 = Vector3(float(data[3]), float(data[4]), float(data[5]))
V3 = Vector3(float(data[6]), float(data[7]), float(data[8]))
ret.append(utils.facet((shift + V1 * scale, shift + V2 * scale, shift + V3 * scale), **kw))
attrs.append(data[4:])
else:
raise RuntimeError("Please, specify a correct format output!")
return ret
[docs]
def textClumps(fileName, shift=Vector3.Zero, discretization=0, orientation=Quaternion((0, 1, 0), 0.0), scale=1.0, **kw):
r"""Load clumps-members from file in a format selected by the ``format`` argument, insert them to the simulation.
:param str filename: file name
:param str format: selected input format. Supported ``'x_y_z_r'``(default), ``'x_y_z_r_clumpId'``
:param [float,float,float] shift: [X,Y,Z] parameter moves the specimen.
:param float scale: factor scales the given data.
:param \*\*kw: (unused keyword arguments) is passed to :yref:`yade.utils.sphere`
:returns: list of spheres.
Lines starting with # are skipped
"""
infile = open(fileName, "r")
lines = infile.readlines()
infile.close()
ret = []
curClump = []
newClumpId = -1
for line in lines:
data = line.split()
if (data[0][0] == "#"):
continue
pos = orientation * Vector3(float(data[0]), float(data[1]), float(data[2]))
if (newClumpId < 0 or newClumpId == int(data[4])):
idD = curClump.append(utils.sphere(shift + scale * pos, scale * float(data[3]), **kw))
newClumpId = int(data[4])
else:
newClumpId = int(data[4])
ret.append(O.bodies.appendClumped(curClump, discretization=discretization))
curClump = []
idD = curClump.append(utils.sphere(shift + scale * pos, scale * float(data[3]), **kw))
if (len(curClump) != 0):
ret.append(O.bodies.appendClumped(curClump, discretization=discretization))
# Set the mask to a clump the same as the first member of it
for i in range(len(ret)):
O.bodies[ret[i][0]].mask = O.bodies[ret[i][1][0]].mask
return ret
[docs]
def text(fileName, shift=Vector3.Zero, scale=1.0, **kw):
r"""Load sphere coordinates from file, returns a list of corresponding bodies; that may be inserted to the simulation with O.bodies.append().
:param string filename: file which has 4 colums [x, y, z, radius].
:param [float,float,float] shift: [X,Y,Z] parameter moves the specimen.
:param float scale: factor scales the given data.
:param \*\*kw: (unused keyword arguments) is passed to :yref:`yade.utils.sphere`
:returns: list of spheres.
Lines starting with # are skipped
"""
return textExt(fileName=fileName, format='x_y_z_r', shift=shift, scale=scale, **kw)
[docs]
def stl(file, dynamic=None, fixed=True, wire=True, color=None, highlight=False, noBound=False, material=-1, scale=1.0, shift=Vector3.Zero):
""" Import a .stl geometry in the form of a set of :yref:`Facet`-shaped bodies.
:param string file: the .stl file serving as geometry input
:param bool dynamic: controls :yref:`Body.dynamic`
:param bool fixed: controls :yref:`Body.dynamic` (with fixed = True imposing :yref:`Body.dynamic` = False) if *dynamic* attribute is not given
:param bool wire: rendering option, passed to :yref:`Facet.wire`
:param color: rendering option, passed to :yref:`Facet.color`
:param bool highlight: rendering option, passed to :yref:`Facet.highlight`
:param bool noBound: sets :yref:`Body.bounded` to False if True, preventing collision detection (and vice-versa)
:param material: defines :yref:`material<Body.material>` properties, see :ref:`DefiningMaterials` for usage
:param float scale: scaling factor to e.g. dilate the geometry if > 1
:param Vector3 shift: for translating the geometry
:returns: a corresponding list of :yref:`Facet`-shaped bodies"""
imp = STLImporter()
facets = imp.ymport(file)
for b in facets:
b.shape.setVertices(b.shape.vertices[0] * scale, b.shape.vertices[1] * scale, b.shape.vertices[2] * scale)
b.shape.color = color if color else utils.randomColor()
b.shape.wire = wire
b.shape.highlight = highlight
pos = b.state.pos * scale + shift
utils._commonBodySetup(b, 0, Vector3(0, 0, 0), material=material, pos=pos, noBound=noBound, dynamic=dynamic, fixed=fixed)
b.aspherical = False
return facets
[docs]
def gts(meshfile, shift=Vector3.Zero, scale=1.0, **kw):
""" Read given meshfile in gts format.
:Parameters:
`meshfile`: string
name of the input file.
`shift`: [float,float,float]
[X,Y,Z] parameter moves the specimen.
`scale`: float
factor scales the given data.
`**kw`: (unused keyword arguments)
is passed to :yref:`yade.utils.facet`
:Returns: list of facets.
"""
import gts, yade.pack
surf = gts.read(open(meshfile))
surf.scale(scale, scale, scale)
surf.translate(shift[0], shift[1], shift[2])
yade.pack.gtsSurface2Facets(surf, **kw)
[docs]
def gmsh(meshfile="file.mesh", shift=Vector3.Zero, scale=1.0, orientation=Quaternion((0, 1, 0), 0.0), **kw):
""" Imports geometry from .mesh file and creates facets.
:Parameters:
`shift`: [float,float,float]
[X,Y,Z] parameter moves the specimen.
`scale`: float
factor scales the given data.
`orientation`: quaternion
orientation of the imported mesh
`**kw`: (unused keyword arguments)
is passed to :yref:`yade.utils.facet`
:Returns: list of facets forming the specimen.
mesh files can easily be created with `GMSH <http://www.geuz.org/gmsh/>`_.
Example added to :ysrc:`examples/packs/packs.py`
Additional examples of mesh-files can be downloaded from
http://www-roc.inria.fr/gamma/download/download.php
"""
infile = open(meshfile, "r")
lines = infile.readlines()
infile.close()
nodelistVector3 = []
elementlistVector3 = [] # for deformable elements
findVerticesString = 0
while (lines[findVerticesString].split()[0] != 'Vertices'): #Find the string with the number of Vertices
findVerticesString += 1
findVerticesString += 1
numNodes = int(lines[findVerticesString].split()[0])
for i in range(numNodes):
nodelistVector3.append(Vector3(0.0, 0.0, 0.0))
id = 0
for line in lines[findVerticesString + 1:numNodes + findVerticesString + 1]:
data = line.split()
nodelistVector3[id] = orientation * Vector3(float(data[0]) * scale, float(data[1]) * scale, float(data[2]) * scale) + shift
id += 1
findTriangleString = findVerticesString + numNodes
while (lines[findTriangleString].split()[0] != 'Triangles'): #Find the string with the number of Triangles
findTriangleString += 1
findTriangleString += 1
numTriangles = int(lines[findTriangleString].split()[0])
triList = []
for i in range(numTriangles):
triList.append([0, 0, 0, 0])
tid = 0
for line in lines[findTriangleString + 1:findTriangleString + numTriangles + 1]:
data = line.split()
id1 = int(data[0]) - 1
id2 = int(data[1]) - 1
id3 = int(data[2]) - 1
triList[tid][0] = tid
triList[tid][1] = id1
triList[tid][2] = id2
triList[tid][3] = id3
tid += 1
ret = []
for i in triList:
a = nodelistVector3[i[1]]
b = nodelistVector3[i[2]]
c = nodelistVector3[i[3]]
ret.append(utils.facet((nodelistVector3[i[1]], nodelistVector3[i[2]], nodelistVector3[i[3]]), **kw))
return ret
[docs]
def gengeoFile(fileName="file.geo", shift=Vector3.Zero, scale=1.0, orientation=Quaternion((0, 1, 0), 0.0), **kw):
""" Imports geometry from LSMGenGeo .geo file and creates spheres.
Since 2012 the package is available in Debian/Ubuntu and known as python-demgengeo
http://packages.qa.debian.org/p/python-demgengeo.html
:Parameters:
`filename`: string
file which has 4 colums [x, y, z, radius].
`shift`: Vector3
Vector3(X,Y,Z) parameter moves the specimen.
`scale`: float
factor scales the given data.
`orientation`: quaternion
orientation of the imported geometry
`**kw`: (unused keyword arguments)
is passed to :yref:`yade.utils.sphere`
:Returns: list of spheres.
LSMGenGeo library allows one to create pack of spheres
with given [Rmin:Rmax] with null stress inside the specimen.
Can be useful for Mining Rock simulation.
Example: :ysrc:`examples/packs/packs.py`, usage of LSMGenGeo library in :ysrc:`examples/test/genCylLSM.py`.
* https://answers.launchpad.net/esys-particle/+faq/877
* http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
* https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/"""
from yade.utils import sphere
infile = open(fileName, "r")
lines = infile.readlines()
infile.close()
numSpheres = int(lines[6].split()[0])
ret = []
for line in lines[7:numSpheres + 7]:
data = line.split()
pos = orientation * Vector3(float(data[0]), float(data[1]), float(data[2]))
ret.append(utils.sphere(shift + scale * pos, scale * float(data[3]), **kw))
return ret
[docs]
def gengeo(mntable, shift=Vector3.Zero, scale=1.0, **kw):
""" Imports geometry from LSMGenGeo library and creates spheres.
Since 2012 the package is available in Debian/Ubuntu and known as python-demgengeo
http://packages.qa.debian.org/p/python-demgengeo.html
:Parameters:
`mntable`: mntable
object, which creates by LSMGenGeo library, see example
`shift`: [float,float,float]
[X,Y,Z] parameter moves the specimen.
`scale`: float
factor scales the given data.
`**kw`: (unused keyword arguments)
is passed to :yref:`yade.utils.sphere`
LSMGenGeo library allows one to create pack of spheres
with given [Rmin:Rmax] with null stress inside the specimen.
Can be useful for Mining Rock simulation.
Example: :ysrc:`examples/packs/packs.py`, usage of LSMGenGeo library in :ysrc:`examples/test/genCylLSM.py`.
* https://answers.launchpad.net/esys-particle/+faq/877
* http://www.access.edu.au/lsmgengeo_python_doc/current/pythonapi/html/GenGeo-module.html
* https://svn.esscc.uq.edu.au/svn/esys3/lsm/contrib/LSMGenGeo/"""
try:
from GenGeo import MNTable3D, Sphere
except ImportError:
from gengeo import MNTable3D, Sphere
ret = []
sphereList = mntable.getSphereListFromGroup(0)
for i in range(0, len(sphereList)):
r = sphereList[i].Radius()
c = sphereList[i].Centre()
ret.append(
utils.sphere(
[shift[0] + scale * float(c.X()), shift[1] + scale * float(c.Y()), shift[2] + scale * float(c.Z())], scale * float(r), **kw
)
)
return ret
[docs]
def unv(fileName, shift=(0, 0, 0), scale=1.0, returnConnectivityTable=False, **kw):
r""" Import geometry from unv file, return list of created facets.
:param string fileName: name of unv file
:param (float,float,float)|Vector3 shift: (X,Y,Z) parameter moves the specimen.
:param float scale: factor scales the given data.
:param \*\*kw: (unused keyword arguments) is passed to :yref:`yade.utils.facet`
:param bool returnConnectivityTable: if True, apart from facets returns also nodes (list of (x,y,z) nodes coordinates) and elements (list of (id1,id2,id3) element nodes ids). If False (default), returns only facets
unv files are mainly used for FEM analyses (are used by `OOFEM <http://www.oofem.org/>`_ and `Abaqus <http://www.simulia.com/products/abaqus_fea.html>`_), but triangular elements can be imported as facets.
These files cen be created e.g. with open-source free software `Salome <http://salome-platform.org>`_.
Example: :ysrc:`examples/test/unv-read/unvRead.py`."""
class UNVReader(object):
# class used in ymport.unv function
# reads and evaluate given unv file and extracts all triangles
# can be extended to read tetrahedrons as well
def __init__(self, fileName, shift=(0, 0, 0), scale=1.0, returnConnectivityTable=False, **kw):
self.shift = shift
self.scale = scale
self.unvFile = open(fileName, 'r')
self.flag = 0
self.line = self.unvFile.readline()
self.lineSplit = self.line.split()
self.nodes = []
self.elements = []
self.read(**kw)
def readLine(self):
self.line = self.unvFile.readline()
self.lineSplit = self.line.split()
def read(self, **kw):
while self.line:
self.evalLine()
self.line = self.unvFile.readline()
self.unvFile.close()
self.createFacets(**kw)
def evalLine(self):
self.lineSplit = self.line.split()
if len(self.lineSplit) <= 1: # eval special unv format
if self.lineSplit[0] == '-1':
pass
elif self.lineSplit[0] == '2411':
self.flag = 1
# nodes
elif self.lineSplit[0] == '2412':
self.flag = 2
# edges (lines)
else:
self.flag = 4
# volume elements or other, not interesting for us (at least yet)
elif self.flag == 1:
self.evalNodes()
elif self.flag == 2:
self.evalEdge()
elif self.flag == 3:
self.evalFacet()
#elif self.flag == 4: self.evalGroup()
def evalNodes(self):
self.readLine()
self.nodes.append(
(
self.shift[0] + self.scale * float(self.lineSplit[0]), self.shift[1] + self.scale * float(self.lineSplit[1]),
self.shift[2] + self.scale * float(self.lineSplit[2])
)
)
def evalEdge(self):
if self.lineSplit[1] == '41':
self.flag = 3
self.evalFacet()
else:
self.readLine()
self.readLine()
def evalFacet(self):
if self.lineSplit[1] == '41': # triangle
self.readLine()
self.elements.append((int(self.lineSplit[0]) - 1, int(self.lineSplit[1]) - 1, int(self.lineSplit[2]) - 1))
else: # is not triangle
self.readLine()
self.flag = 4
# can be added function to handle tetrahedrons
def createFacets(self, **kw):
self.facets = [utils.facet(tuple(self.nodes[i] for i in e), **kw) for e in self.elements]
#
unvReader = UNVReader(fileName, shift, scale, returnConnectivityTable, **kw)
if returnConnectivityTable:
return unvReader.facets, unvReader.nodes, unvReader.elements
return unvReader.facets
[docs]
def iges(fileName, shift=(0, 0, 0), scale=1.0, returnConnectivityTable=False, **kw):
r""" Import triangular mesh from .igs file, return list of created facets.
:param string fileName: name of iges file
:param (float,float,float)|Vector3 shift: (X,Y,Z) parameter moves the specimen.
:param float scale: factor scales the given data.
:param \*\*kw: (unused keyword arguments) is passed to :yref:`yade.utils.facet`
:param bool returnConnectivityTable: if True, apart from facets returns also nodes (list of (x,y,z) nodes coordinates) and elements (list of (id1,id2,id3) element nodes ids). If False (default), returns only facets
"""
nodes, elems = [], []
f = open(fileName)
for line in f:
if line.startswith('134,'): # read nodes coordinates
ls = line.split(',')
v = Vector3(float(ls[1]) * scale + shift[0], float(ls[2]) * scale + shift[1], float(ls[3]) * scale + shift[2])
nodes.append(v)
if line.startswith('136,'): # read elements
ls = line.split(',')
i1, i2, i3 = int(ls[3]) / 2, int(ls[4]) / 2, int(ls[5]) / 2 # the numbering of nodes is 1,3,5,7,..., hence this int(ls[*])/2
elems.append((i1, i2, i3))
facets = [utils.facet((nodes[e[0]], nodes[e[1]], nodes[e[2]]), **kw) for e in elems]
if returnConnectivityTable:
return facets, nodes, elems
return facets
[docs]
def ele(nodeFileName, eleFileName, shift=(0, 0, 0), scale=1.0, **kw):
r""" Import tetrahedral mesh from .ele file, return list of created tetrahedrons.
:param string nodeFileName: name of .node file
:param string eleFileName: name of .ele file
:param (float,float,float)|Vector3 shift: (X,Y,Z) parameter moves the specimen.
:param float scale: factor scales the given data.
:param \*\*kw: (unused keyword arguments) is passed to :yref:`yade.utils.polyhedron`
"""
f = open(nodeFileName)
line = f.readline()
while line.startswith('#'):
line = f.readline()
ls = line.split()
nVertices = int(ls[0])
if int(ls[1]) != 3:
raise RuntimeError("wrong .node file, number of dimensions should be 3")
vertices = [None for i in range(nVertices)]
shift = Vector3(shift)
for i in range(nVertices):
line = f.readline()
while line.startswith('#'):
line = f.readline()
ls = line.split()
if not ls:
continue
v = shift + scale * Vector3(tuple(float(ls[j]) for j in (1, 2, 3)))
vertices[int(ls[0]) - 1] = v
f.close()
#
f = open(eleFileName)
line = f.readline()
while line.startswith('#'):
line = f.readline()
ls = line.split()
if int(ls[1]) != 4:
raise RuntimeError("wrong .ele file, unsupported tetrahedra's number of nodes")
nTetras = int(ls[0])
tetras = [None for i in range(nTetras)]
for i in range(nTetras):
ls = f.readline().split()
tetras[int(ls[0]) - 1] = utils.polyhedron([vertices[int(ls[j]) - 1] for j in (1, 2, 3, 4)], **kw)
f.close()
return tetras
[docs]
def textPolyhedra(fileName, material, shift=Vector3.Zero, scale=1.0, orientation=Quaternion((0, 1, 0), 0.0), **kw):
r"""Load polyhedra from a text file.
:param str filename: file name. Expected file format is the one output by export.textPolyhedra.
:param [float,float,float] shift: [X,Y,Z] parameter moves the specimen.
:param float scale: factor scales the given data.
:param quaternion orientation: orientation of the imported polyhedra
:param \*\*kw: (unused keyword arguments) is passed to :yref:`yade.polyhedra_utils.polyhedra`
:returns: list of polyhedras.
Lines starting with # are skipped
"""
from yade import polyhedra_utils
infile = open(fileName, "r")
lines = infile.readlines()
infile.close()
ret = []
i = -1
while (i < (len(lines) - 1)):
i += 1
line = lines[i]
data = line.split()
if (data[0][0] == "#"):
continue
if (len(data) != 3):
raise RuntimeError("Check polyhedra input file! Number of parameters in the first line is not 3!")
else:
vertLoad = []
# ids = int(data[0])
verts = int(data[1])
surfs = int(data[2])
i += 1
for d in range(verts):
dataV = lines[i].split()
pos = orientation * Vector3(float(dataV[0]) * scale, float(dataV[1]) * scale, float(dataV[2]) * scale) + shift
vertLoad.append(pos)
i += 1
polR = polyhedra_utils.polyhedra(material=material, v=vertLoad, **kw)
if (polR != -1):
ret.append(polR)
i = i + surfs - 1
return ret
[docs]
def blockMeshDict(path, patchasWall=True, emptyasWall=True, **kw):
r"""Load openfoam's blockMeshDict file's "boundary" section as facets.
:param str path: file name. Typical value is: "system/blockMeshDict".
:param bool patchasWall: load "patch"-es as walls.
:param bool emptyasWall: load "empty"-es as walls.
:param \*\*kw: (unused keyword arguments) is passed to :yref:`yade.utils.facet`
:returns: list of facets.
"""
BOUNDARY_ERROR = 0
BOUNDARY_PATCH = 1
BOUNDARY_WALL = 2
BOUNDARY_EMPTY = 3
class Boundary:
def __init__(self):
self.name = ""
self.typ = BOUNDARY_ERROR
self.faces4 = []
def tryParseFloat(x, n):
val = 0.0
try:
val = float(x)
except ValueError:
assert False, "{}: Expected 'float', got: {}".format(n, x)
return val
def tryParseInt(x, n):
val = 0
try:
val = int(x)
except ValueError:
assert False, "{}: Expected 'int', got: {}".format(n, x)
return val
def tryParseArg(l, n):
parts = l.split()
assert len(parts) == 2, "{}: Wrong argument format, expected 'key value;', got '{}'".format(n, l)
arg = parts[1].strip()
assert arg[-1] == ';', "{}: Wrong argument format: '{}', missing ';'".format(n, l)
return arg[:-1]
convertToMeters = 1.0
foamFileBlock = False
verticesBlock = False
vertices = []
boundariesBlock = False
boundaries = []
facesBlock = False
facets = []
lines = []
with open(path) as fp:
lines = fp.readlines()
lineNumber = 0
blockDepth = 0
currentBoundary = Boundary()
for line in lines:
line = line.split("//")[0]
line = line.strip()
lineNumber += 1
if len(line) == 0:
continue
if line.startswith("FoamFile") and blockDepth == 0:
foamFileBlock = True
elif line.startswith("convertToMeters") and blockDepth == 0:
convertToMetersStr = tryParseArg(line, lineNumber)
convertToMeters = tryParseFloat(convertToMetersStr, lineNumber)
elif line.startswith("vertices") and blockDepth == 0:
verticesBlock = True
elif line.startswith("boundary") and blockDepth == 0:
boundariesBlock = True
elif line == "(" or line == "{":
blockDepth += 1
continue
elif line.endswith(");"):
blockDepth -= 1
if blockDepth == 0:
verticesBlock = False
boundariesBlock = False
elif facesBlock == 2:
facesBlock = False
continue
elif line.endswith("}"):
blockDepth -= 1
if blockDepth == 0:
foamFileBlock = False
elif blockDepth == 1:
assert boundariesBlock, "{}: Parser error, only boundaries are supported.".format(lineNumber)
assert currentBoundary.name != "", "{}: Empty name for boundary.".format(lineNumber)
assert currentBoundary.typ != BOUNDARY_ERROR, "{}: Invalid type for boundary, supported: patch, wall, empty".format(lineNumber)
assert len(currentBoundary.faces4) > 0, "{}: Boundary must contain at least one face.".format(lineNumber)
boundaries.append(currentBoundary)
currentBoundary = Boundary()
continue
else:
if foamFileBlock:
if blockDepth == 1:
if (line.startswith("version")):
foamVersion = tryParseArg(line, lineNumber)
assert foamVersion == "2.0", "{}: Only version '2.0' is supported, got: '{}'".format(lineNumber, foamVersion)
elif (line.startswith("format")):
foamFormat = tryParseArg(line, lineNumber)
assert foamFormat == "ascii", "{}: Only 'ascii' format is supported, got: '{}'".format(lineNumber, foamFormat)
elif (line.startswith("class")):
foamClass = tryParseArg(line, lineNumber)
assert foamClass == "dictionary", "{}: Class must be 'dictionary' not '{}'".format(lineNumber, foamClass)
elif (line.startswith("object")):
foamObject = tryParseArg(line, lineNumber)
assert foamObject == "blockMeshDict", "{}: Object must be 'blockMeshDict' not '{}'".format(
lineNumber, foamObject
)
else:
assert False, "{}: Unknown FoamFile-header field: {}".format(lineNumber, line)
else:
assert False, "{}: FoamFile-block must be in the top level".format(lineNumber)
elif verticesBlock:
if line.find("(") != -1 and line.find(")") != -1:
vStr = line[1:-1]
vStrs = vStr.split()
assert len(vStrs) == 3, "{}: Vertex format expected: (x y z), got: {}".format(lineNumber, vStr)
x = tryParseFloat(vStrs[0], lineNumber)
y = tryParseFloat(vStrs[1], lineNumber)
z = tryParseFloat(vStrs[2], lineNumber)
vertices.append((x, y, z))
else:
assert False, "{}: Vertex format expected: (x y z), got: {}".format(lineNumber, line)
elif boundariesBlock:
if blockDepth == 1:
assert len(line.split(" ")) == 1, "{}: Expected surface name, got: {}".format(lineNumber, line)
currentBoundary.name = line
elif blockDepth == 2:
if line.startswith("type"):
typStrs = line.split()
assert len(typStrs) == 2, "{}: Expected boundary type definition, got: {}".format(lineNumber, line)
assert typStrs[1][-1] == ';', "{}: Expected ';' at the end of boundary type".format(lineNumber)
typStr = typStrs[1][:-1]
if typStr == "patch":
currentBoundary.typ = BOUNDARY_PATCH
elif typStr == "wall":
currentBoundary.typ = BOUNDARY_WALL
elif typStr == "empty":
currentBoundary.typ = BOUNDARY_EMPTY
else:
assert False, "{}: Unknown boundary type: {}".format(lineNumber, typStr)
elif line.startswith("faces"):
facesBlock = True
else:
assert False, "{}: Expected 'type' or 'faces', got: {}".format(lineNumber, line)
elif blockDepth == 3:
assert facesBlock, "{}: Parser error, only faces supported at level 3".format(lineNumber)
if line.find("(") != -1 and line.find(")") != -1:
fStr = line[1:-1]
fStrs = fStr.split()
assert len(fStrs) == 4, "{}: Face format expected: (v0 v1 v2 v3), got: {}".format(lineNumber, fStr)
v0 = tryParseInt(fStrs[0], lineNumber)
v1 = tryParseInt(fStrs[1], lineNumber)
v2 = tryParseInt(fStrs[2], lineNumber)
v3 = tryParseInt(fStrs[3], lineNumber)
assert v0 >= 0, "{}: Face index must be greater or equal to 0, not {}".format(lineNumber, v0)
assert v1 >= 0, "{}: Face index must be greater or equal to 0, not {}".format(lineNumber, v1)
assert v2 >= 0, "{}: Face index must be greater or equal to 0, not {}".format(lineNumber, v2)
assert v3 >= 0, "{}: Face index must be greater or equal to 0, not {}".format(lineNumber, v3)
currentBoundary.faces4.append((v0, v1, v2, v3))
else:
assert False, "{}: Face format expected: (v0 v1 v2 v3), got: {}".format(lineNumber, line)
else:
assert blockDepth == 0, "{}: Parser error, only block-levels 0, 1, 2 and 3 are supported".format(lineNumber)
assert blockDepth == 0, "Unmatched parentheses."
assert len(boundaries) != 0, "'{}' must contain at least one boundary.".format(path)
for b in boundaries:
if b.typ == BOUNDARY_PATCH and patchasWall == False:
continue
if b.typ == BOUNDARY_EMPTY and emptyasWall == False:
continue
for f4 in b.faces4:
f0 = (f4[0], f4[1], f4[2])
f1 = (f4[2], f4[3], f4[0])
f0v0 = tuple([x * convertToMeters for x in vertices[f0[0]]])
f0v1 = tuple([x * convertToMeters for x in vertices[f0[1]]])
f0v2 = tuple([x * convertToMeters for x in vertices[f0[2]]])
f1v0 = tuple([x * convertToMeters for x in vertices[f1[0]]])
f1v1 = tuple([x * convertToMeters for x in vertices[f1[1]]])
f1v2 = tuple([x * convertToMeters for x in vertices[f1[2]]])
facets.append(utils.facet((f0v0, f0v1, f0v2), **kw))
facets.append(utils.facet((f1v0, f1v1, f1v2), **kw))
return facets
[docs]
def polyMesh(path, patchasWall=True, emptyasWall=True, **kw):
r"""Load openfoam's polyMesh directory as facets.
:param str path: directory path. Typical value is: "constant/polyMesh".
:param bool patchAsWall: load "patch"-es as walls.
:param bool emptyAsWall: load "empty"-es as walls.
:param \*\*kw: (unused keyword arguments) is passed to :yref:`yade.utils.facet`
:returns: list of facets.
"""
facetCoords = readPolyMesh(path, patchasWall, emptyasWall)
facets = []
for fc in facetCoords:
facets.append(utils.facet(fc, **kw))
return facets