Source code for yade.post2d

# encoding: utf-8
# 2009 © Václav Šmilauer <>
Module for 2d postprocessing, containing classes to project points from 3d to 2d in various ways,
providing basic but flexible framework for extracting arbitrary scalar values from bodies/interactions
and plotting the results. There are 2 basic components: flatteners and extractors.

The algorithms operate on bodies (default) or interactions, depending on the ``intr`` parameter

Instance of classes that convert 3d (model) coordinates to 2d (plot) coordinates. Their interface is
defined by the :yref:`yade.post2d.Flatten` class (``__call__``, ``planar``, ``normal``).

Callable objects returning scalar or vector value, given a body/interaction object.
If a 3d vector is returned, Flattener.planar is called, which should return only in-plane
components of the vector.

This example can be found in examples/concrete/ ::

 from yade import post2d
 import pylab # the matlab-like interface of matplotlib


 # flattener that project to the xz plane
 # return scalar given a Body instance
 extractDmg=lambda b: b.state.normDmg
 # will call flattener.planar implicitly
 # the same as: extractVelocity=lambda b: flattener.planar(b,b.state.vel)
 extractVelocity=lambda b: b.state.vel

 # create new figure
 # plot raw damage

 # plot smooth damage into new figure
 pylab.figure(); ax,map=post2d.plot(,flattener,stDev=2e-3))
 # show color scale

 # raw velocity (vector field) plot
 pylab.figure(); post2d.plot(,flattener))

 # smooth velocity plot; data are sampled at regular grid
 pylab.figure(); ax,map=post2d.plot(,flattener,stDev=1e-3))
 # save last (current) figure to file

 # show the figures

from builtins import zip
from builtins import range
from builtins import object
from yade.wrapper import *
from yade.minieigenHP import *

[docs]class Flatten(object): """Abstract class for converting 3d point into 2d. Used by post2d.data2d.""" def __init__(self): pass def __call__(self,b): "Given a :yref:`Body` / :yref:`Interaction` instance, should return either 2d coordinates as a 2-tuple, or None if the Body should be discarded." pass
[docs] def planar(self,pos,vec): "Given position and vector value, project the vector value to the flat plane and return its 2 in-plane components."
[docs] def normal(self,pos,vec): "Given position and vector value, return lenght of the vector normal to the flat plane."
[docs]class HelixFlatten(Flatten): """Class converting 3d point to 2d based on projection from helix. The y-axis in the projection corresponds to the rotation axis"""
[docs] def __init__(self,useRef,thetaRange,dH_dTheta,axis=2,periodStart=0): """ :param bool useRef: use reference positions rather than actual positions :param (θmin,θmax) thetaRange: bodies outside this range will be discarded :param float dH_dTheta: inclination of the spiral (per radian) :param {0,1,2} axis: axis of rotation of the spiral :param float periodStart: height of the spiral for zero angle """ self.useRef,self.thetaRange,self.dH_dTheta,self.axis,self.periodStart=useRef,thetaRange,dH_dTheta,axis,periodStart self.ax1,self.ax2=(axis+1)%3,(axis+2)%3
def _getPos(self,b): return b.state.refPos if self.useRef else b.state.pos def __call__(self,b): import yade.utils xy,theta=yade.utils.spiralProject(_getPos(b),self.dH_dTheta,self.axis,self.periodStart) if theta<thetaRange[0] or theta>thetaRange[1]: return None return xy
[docs] def planar(self,b,vec): from math import sqrt pos=_getPos(b) pos[self.axis]=0; pos.Normalize() return pos.Dot(vec),vec[axis]
[docs] def normal(self,pos,vec): ax=Vector3(0,0,0); ax[axis]=1; pos=_getPos(b) circum=ax.Cross(pos); circum.Normalize() return circum.Dot(vec)
[docs]class CylinderFlatten(Flatten): """Class for converting 3d point to 2d based on projection onto plane from circle. The y-axis in the projection corresponds to the rotation axis; the x-axis is distance form the axis. """
[docs] def __init__(self,useRef,axis=2): """ :param useRef: (bool) use reference positions rather than actual positions :param axis: axis of the cylinder, ∈{0,1,2} """ if axis not in (0,1,2): raise IndexError("axis must be one of 0,1,2 (not %d)"%axis) self.useRef,self.axis=useRef,axis
def _getPos(self,b): return b.state.refPos if self.useRef else b.state.pos def __call__(self,b): p=_getPos(b) pp=(p[(self.axis+1)%3],p[(self.axis+2)%3]) import math.sqrt return math.sqrt(pp[0]**2+pp[2]**2),p[self.axis]
[docs] def planar(self,b,vec): pos=_getPos(b) from math import sqrt pos[self.axis]=0; pos.Normalize() return pos.Dot(vec),vec[axis]
[docs] def normal(self,b,vec): pos=_getPos(b) ax=Vector3(0,0,0); ax[axis]=1 circum=ax.Cross(pos); circum.Normalize() return circum.Dot(vec)
[docs]class AxisFlatten(Flatten):
[docs] def __init__(self,useRef=False,axis=2): """ :param bool useRef: use reference positions rather than actual positions (only meaningful when operating on Bodies) :param {0,1,2} axis: axis normal to the plane; the return value will be simply position with this component dropped. """ if axis not in (0,1,2): raise IndexError("axis must be one of 0,1,2 (not %d)"%axis) self.useRef,self.axis=useRef,axis self.ax1,self.ax2=(self.axis+1)%3,(self.axis+2)%3
def __call__(self,b): p=((b.state.refPos if self.useRef else b.state.pos) if isinstance(b,Body) else b.geom.contactPoint) return (p[self.ax1],p[self.ax2])
[docs] def planar(self,pos,vec): return vec[self.ax1],vec[self.ax2]
[docs] def normal(self,pos,vec): return vec[self.axis]
[docs]def data(extractor,flattener,intr=False,onlyDynamic=True,stDev=None,relThreshold=3.,perArea=0,div=(50,50),margin=(0,0),radius=1): """Filter all bodies/interactions, project them to 2d and extract required scalar value; return either discrete array of positions and values, or smoothed data, depending on whether the stDev value is specified. The ``intr`` parameter determines whether we operate on bodies or interactions; the extractor provided should expect to receive body/interaction. :param callable extractor: receives :yref:`Body` (or :yref:`Interaction`, if ``intr`` is ``True``) instance, should return scalar, a 2-tuple (vector fields) or None (to skip that body/interaction) :param callable flattener: :yref:`yade.post2d.Flatten` instance, receiving body/interaction, returns its 2d coordinates or ``None`` (to skip that body/interaction) :param bool intr: operate on interactions rather than bodies :param bool onlyDynamic: skip all non-dynamic bodies :param float/None stDev: standard deviation for averaging, enables smoothing; ``None`` (default) means raw mode, where discrete points are returned :param float relThreshold: threshold for the gaussian weight function relative to stDev (smooth mode only) :param int perArea: if 1, compute weightedSum/weightedArea rather than weighted average (weightedSum/sumWeights); the first is useful to compute average stress; if 2, compute averages on subdivision elements, not using weight function :param (int,int) div: number of cells for the gaussian grid (smooth mode only) :param (float,float) margin: x,y margins around bounding box for data (smooth mode only) :param float/callable radius: Fallback value for radius (for raw plotting) for non-spherical bodies or interactions; if a callable, receives body/interaction and returns radius :return: dictionary Returned dictionary always containing keys 'type' (one of 'rawScalar','rawVector','smoothScalar','smoothVector', depending on value of smooth and on return value from extractor), 'x', 'y', 'bbox'. Raw data further contains 'radii'. Scalar fields contain 'val' (value from *extractor*), vector fields have 'valX' and 'valY' (2 components returned by the *extractor*). """ from yade.minieigenHP import Vector3 xx,yy,dd1,dd2,rr=[],[],[],[],[] nDim=0 objects=O.interactions if intr else O.bodies for b in objects: if not intr and onlyDynamic and not b.dynamic: continue xy,d=flattener(b),extractor(b) if xy==None or d==None: continue if nDim==0: nDim=1 if isinstance(d,float) else 2 if nDim==1: dd1.append(d); elif len(d)==2: dd1.append(d[0]); dd2.append(d[1]) elif len(d)==3: d1,d2=flattener.planar(b,Vector3(d)) dd1.append(d1); dd2.append(d2) else: raise RuntimeError("Extractor must return float or 2 or 3 (not %d) floats"%nDim) if stDev==None: # radii are needed in the raw mode exclusively if not intr and isinstance(b.shape,Sphere): r=b.shape.radius else: r=(radius(b) if callable(radius) else radius) rr.append(r) xx.append(xy[0]); yy.append(xy[1]); if stDev==None: bbox=(min(xx),min(yy)),(max(xx),max(yy)) if nDim==1: return {'type':'rawScalar','x':xx,'y':yy,'val':dd1,'radii':rr,'bbox':bbox} else: return {'type':'rawVector','x':xx,'y':yy,'valX':dd1,'valY':dd2,'radii':rr,'bbox':bbox} from yade.WeightedAverage2d import GaussAverage import numpy lo,hi=(min(xx),min(yy)),(max(xx),max(yy)) llo=lo[0]-margin[0],lo[1]-margin[1]; hhi=hi[0]+margin[0],hi[1]+margin[1] ga=GaussAverage(llo,hhi,div,stDev,relThreshold) ga2=GaussAverage(llo,hhi,div,stDev,relThreshold) for i in range(0,len(xx)): ga.add(dd1[i],(xx[i],yy[i])) if nDim>1: ga2.add(dd2[i],(xx[i],yy[i])) step=[(hhi[i]-llo[i])/float(div[i]) for i in [0,1]] xxx,yyy=[numpy.arange(llo[i]+.5*step[i],hhi[i],step[i]) for i in [0,1]] ddd=numpy.zeros((len(yyy),len(xxx)),float) ddd2=numpy.zeros((len(yyy),len(xxx)),float) # set the type of average we are going to use if perArea==0: def compAvg(gauss,coord,cellCoord): return float(gauss.avg(coord)) elif perArea==1: def compAvg(gauss,coord,cellCoord): return gauss.avgPerUnitArea(coord) elif perArea==2: def compAvg(gauss,coord,cellCoord): s=gauss.cellSum(cellCoord); return (s/gauss.cellArea) if s>0 else float('nan') elif perArea==3: def compAvg(gauss,coord,cellCoord): s=gauss.cellSum(cellCoord); return s if s>0 else float('nan') else: raise RuntimeError('Invalid value of *perArea*, must be one of 0,1,2,3.') # for cx in range(0,div[0]): for cy in range(0,div[1]): ddd[cy,cx]=compAvg(ga,(xxx[cx],yyy[cy]),(cx,cy)) if nDim>1: ddd2[cy,cx]=compAvg(ga2,(xxx[cx],yyy[cy]),(cx,cy)) if nDim==1: return {'type':'smoothScalar','x':xxx,'y':yyy,'val':ddd,'bbox':(llo,hhi),'perArea':perArea,'grid':ga} else: return {'type':'smoothVector','x':xxx,'y':yyy,'valX':ddd,'valY':ddd2,'bbox':(llo,hhi),'grid':ga,'grid2':ga2}
[docs]def plot(data,axes=None,alpha=.5,clabel=True,cbar=False,aspect='equal',**kw): """Given output from, plot the scalar as discrete or smooth plot. For raw discrete data, plot filled circles with radii of particles, colored by the scalar value. For smooth discrete data, plot image with optional contours and contour labels. For vector data (raw or smooth), plot quiver (vector field), with arrows colored by the magnitude. :param axes: matplotlib.axes\ instance where the figure will be plotted; if None, will be created from scratch. :param data: value returned by :yref:`` :param bool clabel: show contour labels (smooth mode only), or annotate cells with numbers inside (with perArea==2) :param bool cbar: show colorbar (equivalent to calling pylab.colorbar(mappable) on the returned mappable) :return: tuple of ``(axes,mappable)``; mappable can be used in further calls to pylab.colorbar. """ import pylab,math if not axes: axes=pylab.gca() if data['type']=='rawScalar': from matplotlib.patches import Circle import matplotlib.collections,numpy patches=[] for x,y,d,r in zip(data['x'],data['y'],data['val'],data['radii']): patches.append(Circle(xy=(x,y),radius=r)) coll=matplotlib.collections.PatchCollection(patches,linewidths=0.,**kw) coll.set_array(numpy.array(data['val'])) bb=coll.get_datalim(coll.get_transform()) axes.add_collection(coll) axes.set_xlim(bb.xmin,bb.xmax); axes.set_ylim(bb.ymin,bb.ymax) if cbar: axes.get_figure().colorbar(coll) axes.grid(True); axes.set_aspect(aspect) return axes,coll elif data['type']=='smoothScalar': loHi=data['bbox'] if data['perArea'] in (0,1): img=axes.imshow(data['val'],extent=(loHi[0][0],loHi[1][0],loHi[0][1],loHi[1][1]),origin='lower',aspect=aspect,**kw) ct=axes.contour(data['x'],data['y'],data['val'],colors='k',origin='lower',extend='both') if clabel: axes.clabel(ct,inline=1,fontsize=10) else: img=axes.imshow(data['val'],extent=(loHi[0][0],loHi[1][0],loHi[0][1],loHi[1][1]),origin='lower',aspect=aspect,interpolation='nearest',**kw) xStep=(data['x'][1]-data['x'][0]) if len(data['x'])>1 else 0 for y,valLine in zip(data['y'],data['val']): for x,val in zip(data['x'],valLine): axes.text(x-.4*xStep,y,('-' if math.isnan(val) else '%5g'%val),size=4) axes.update_datalim(loHi) axes.set_xlim(loHi[0][0],loHi[1][0]); axes.set_ylim(loHi[0][1],loHi[1][1]) if cbar: axes.get_figure().colorbar(img) axes.grid(True if data['perArea'] in (0,1) else False); axes.set_aspect(aspect) return axes,img elif data['type'] in ('rawVector','smoothVector'): import numpy loHi=data['bbox'] valX,valY=numpy.array(data['valX']),numpy.array(data['valY']) # rawVector data are plain python lists scalars=numpy.sqrt(valX**2+valY**2) # numpy.sqrt computes element-wise sqrt quiv=axes.quiver(data['x'],data['y'],data['valX'],data['valY'],scalars,**kw) #axes.update_datalim(loHi) axes.set_xlim(loHi[0][0],loHi[1][0]); axes.set_ylim(loHi[0][1],loHi[1][1]) if cbar: axes.get_figure().colorbar(coll) axes.grid(True); axes.set_aspect(aspect) return axes,quiv