# 2013 Jan Elias, http://www.fce.vutbr.cz/STM/elias.j/, elias.j@fce.vutbr.cz
# https://www.vutbr.cz/www_base/gigadisk.php?i=95194aa9a
"""
Auxiliary functions for polyhedra
"""
import math, random, doctest, geom, numpy
from yade import Vector3
from yade.wrapper import *
try: # use psyco if available
import psyco
psyco.full()
except ImportError:
pass
# c++ implementations for performance reasons
from yade._polyhedra_utils import *
from yade.utils import randomColor
#**********************************************************************************
#create polyhedra, one can specify vertices directly, or leave it empty for random shape
[docs]
def polyhedra(material, size=Vector3(1, 1, 1), seed=None, v=[], mask=1, fixed=False, color=[-1, -1, -1]):
"""create polyhedra, one can specify vertices directly, or leave it empty for random shape.
:param Material material: material of new body
:param Vector3 size: size of new body (see Polyhedra docs)
:param float seed: seed for random operations
:param [Vector3] v: list of body vertices (see Polyhedra docs)
"""
b = Body()
random.seed(seed)
b.aspherical = True
if len(v) > 0:
b.shape = Polyhedra(v=v)
else:
b.shape = Polyhedra(size=size, seed=random.randint(0, int(1E6)))
if color[0] == -1:
b.shape.color = randomColor(seed=random.randint(0, int(1E6)))
else:
b.shape.color = color
b.mat = material
b.state.mass = b.mat.density * b.shape.GetVolume()
b.state.inertia = b.shape.GetInertia() * b.mat.density
b.state.ori = b.shape.GetOri()
b.state.pos = b.shape.GetCentroid()
b.mask = mask
if fixed:
b.state.blockedDOFs = 'xyzXYZ'
return b
#**********************************************************************************
#creates polyhedra having N vertices and resembling sphere
[docs]
def polyhedralBall(radius, N, material, center, mask=1):
"""creates polyhedra having N vertices and resembling sphere
:param float radius: ball radius
:param int N: number of vertices
:param Material material: material of new body
:param Vector3 center: center of the new body
"""
pts = []
inc = math.pi * (3. - math.sqrt(5.))
off = 2. / float(N)
for k in range(0, N):
y = k * off - 1. + (off / 2.)
r = math.sqrt(1. - y * y)
phi = k * inc
pts.append([math.cos(phi) * r * radius, y * radius, math.sin(phi) * r * radius])
ball = polyhedra(material, v=pts)
ball.state.pos = center
return ball
#**********************************************************************************
[docs]
def polyhedraTruncIcosaHed(radius, material, centre, mask=1):
pts = []
p = (1. + math.sqrt(5.)) / 2.
f = radius / math.sqrt(9. * p + 1.)
A = [[0., 1., 3. * p], [2., 1. + 2. * p, p], [1., 2. + p, 2. * p]]
for a in A:
a = [a[0] * f, a[1] * f, a[2] * f]
B = [a, [a[1], a[2], a[0]], [a[2], a[0], a[1]]]
for b in B:
pts.append(b)
if not b[0] == 0:
pts.append([-b[0], b[1], b[2]])
if not b[1] == 0:
pts.append([-b[0], -b[1], b[2]])
if not b[2] == 0:
pts.append([-b[0], -b[1], -b[2]])
if not b[2] == 0:
pts.append([-b[0], b[1], -b[2]])
if not b[1] == 0:
pts.append([b[0], -b[1], b[2]])
if not b[2] == 0:
pts.append([b[0], -b[1], -b[2]])
if not b[2] == 0:
pts.append([b[0], b[1], -b[2]])
ball = polyhedra(material, v=pts)
ball.state.pos = centre
return ball
#**********************************************************************************
[docs]
def polyhedraSnubCube(radius, material, centre, mask=1):
pts = []
f = radius / 1.3437133737446
c1 = 0.337754
c2 = 1.14261
c3 = 0.621226
A = [[c2, c1, c3], [c1, c3, c2], [c3, c2, c1], [-c1, -c2, -c3], [-c2, -c3, -c1], [-c3, -c1, -c2]]
for a in A:
a = [a[0] * f, a[1] * f, a[2] * f]
pts.append([-a[0], -a[1], a[2]])
pts.append([a[0], -a[1], -a[2]])
pts.append([-a[0], a[1], -a[2]])
pts.append([a[0], a[1], a[2]])
ball = polyhedra(material, v=pts)
ball.state.pos = centre
return ball
#**********************************************************************************
#fill box [mincoord, maxcoord] by non-overlaping polyhedrons with random geometry and sizes within the range (uniformly distributed)
[docs]
def fillBox(mincoord, maxcoord, material, sizemin=[1, 1, 1], sizemax=[1, 1, 1], ratio=[0, 0, 0], seed=None, mask=1):
"""fill box [mincoord, maxcoord] by non-overlaping polyhedrons with random geometry and sizes within the range (uniformly distributed)
:param Vector3 mincoord: first corner
:param Vector3 maxcoord: second corner
:param Vector3 sizemin: minimal size of bodies
:param Vector3 sizemax: maximal size of bodies
:param Vector3 ratio: scaling ratio
:param float seed: random seed
"""
random.seed(seed)
v = fillBox_cpp(mincoord, maxcoord, sizemin, sizemax, ratio, random.randint(0, int(1E6)), material)
#lastnan = -1
#for i in range(0,len(v)):
# if(math.isnan(v[i][0])):
# O.bodies.append(polyhedra(material,seed=random.randint(0,int(1E6)),v=v[lastnan+1:i],mask=1,fixed=False))
# lastnan = i
#**********************************************************************************
#fill box [mincoord, maxcoord] by non-overlaping polyhedrons with random geometry and sizes within the range (uniformly distributed)
[docs]
def fillBoxByBalls(mincoord, maxcoord, material, sizemin=[1, 1, 1], sizemax=[1, 1, 1], ratio=[0, 0, 0], seed=None, mask=1, numpoints=60):
random.seed(seed)
v = fillBoxByBalls_cpp(mincoord, maxcoord, sizemin, sizemax, ratio, random.randint(0, int(1E6)), material, numpoints)
#lastnan = -1
#for i in range(0,len(v)):
# if(math.isnan(v[i][0])):
# O.bodies.append(polyhedra(material,seed=random.randint(0,int(1E6)),v=v[lastnan+1:i],mask=1,fixed=False))
# lastnan = i