Source code for yade.linterpolation

# encoding: utf-8
#
# © 2009 Václav Šmilauer <eudoxos@arcig.cz>
#
"""
Module for rudimentary support of manipulation with piecewise-linear
functions (which are usually interpolations of higher-order functions,
whence the module name). Interpolation is always given as two lists
of the same length, where the x-list must be increasing.

Periodicity is supported by supposing that the interpolation
can wrap from the last x-value to the first x-value (which
should be 0 for meaningful results).

Non-periodic interpolation can be converted to periodic one
by padding the interpolation with constant head and tail using
the sanitizeInterpolation function.

There is a c++ template function for interpolating on such sequences in
pkg/common/Engine/PartialEngine/LinearInterpolate.hpp (stateful, therefore
fast for sequential reads).

TODO: Interpolating from within python is not (yet) supported.
"""


[docs] def revIntegrateLinear(I, x0, y0, x1, y1): """Helper function, returns value of integral variable x for linear function f passing through (x0,y0),(x1,y1) such that 1. x∈[x0,x1] 2. ∫_x0^x f dx=I and raise exception if such number doesn't exist or the solution is not unique (possible?) """ from math import sqrt dx, dy = x1 - x0, y1 - y0 if dy == 0: # special case, degenerates to linear equation return (x0 * y0 + I) / y0 a = dy / dx b = 2 * (y0 - x0 * dy / dx) c = x0**2 * dy / dx - 2 * x0 * y0 - 2 * I det = b**2 - 4 * a * c assert (det > 0) p, q = (-b + sqrt(det)) / (2 * a), (-b - sqrt(det)) / (2 * a) pOK, qOK = x0 <= p <= x1, x0 <= q <= x1 if pOK and qOK: raise ValueError("Both radices within interval!?") if not pOK and not qOK: raise ValueError("No radix in given interval!") return p if pOK else q
[docs] def integral(x, y): """Return integral of piecewise-linear function given by points x0,x1,… and y0,y1,… """ assert (len(x) == len(y)) sum = 0 for i in range(1, len(x)): sum += (x[i] - x[i - 1]) * .5 * (y[i] + y[i - 1]) return sum
[docs] def xFractionalFromIntegral(integral, x, y): """Return x within range x0…xn such that ∫_x0^x f dx==integral. Raises error if the integral value is not reached within the x-range. """ sum = 0 for i in range(1, len(x)): diff = (x[i] - x[i - 1]) * .5 * (y[i] + y[i - 1]) if sum + diff > integral: return revIntegrateLinear(integral - sum, x[i - 1], y[i - 1], x[i], y[i]) else: sum += diff raise ValueError("Integral not reached within the interpolation range!")
[docs] def xFromIntegral(integralValue, x, y): """Return x such that ∫_x0^x f dx==integral. x wraps around at xn. For meaningful results, therefore, x0 should == 0 """ from math import floor period = x[-1] - x[0] periodIntegral = integral(x, y) numPeriods = floor(integralValue / periodIntegral) xFrac = xFractionalFromIntegral(integralValue - numPeriods * periodIntegral, x, y) #print '### wanted _%g; period=%g; periodIntegral=_%g (numPeriods=%g); rests _%g (xFrac=%g)'%(integralValue,period,periodIntegral,numPeriods,integralValue-numPeriods*periodIntegral,xFrac) #print '### returning %g*%g+%g=%g'%(period,numPeriods,xFrac,period*numPeriods+xFrac) return period * numPeriods + xFrac
[docs] def sanitizeInterpolation(x, y, x0, x1): """Extends piecewise-linear function in such way that it spans at least the x0…x1 interval, by adding constant padding at the beginning (using y0) and/or at the end (using y1) or not at all.""" xx, yy = [], [] if x0 < x[0]: xx += [x0] yy += [y[0]] xx += x yy += y if x1 > x[-1]: xx += [x1] yy += [y[-1]] return xx, yy
if __name__ == "main": xx, yy = sanitizeInterpolation([1, 2, 3], [1, 1, 2], 0, 4) print(xx, yy) print(integral(xx, yy)) # 5.5 print(revIntegrateLinear(.625, 1, 1, 2, 2)) # 1.5 print(xFractionalFromIntegral(1.625, xx, yy)) # 1.625 print(xFractionalFromIntegral(2.625, xx, yy)) # 2.5