
THM short-course: Day 1

The architecture of Yade

Robert Caulk1, Bruno Chareyre1

June 20th, 2022

1Univ. Grenoble Alpes

Grenoble INP, 3SR

1

Resources, resources, resources

The Yade website

Just one keyword search away from knowing exactly what a command

does:

www.yade-dem.org

2

www.yade-dem.org

Class Reference - a full index

A full description of thousands of user accessible parameters

https://yade-dem.org/doc/yade.wrapper.html

3

https://yade-dem.org/doc/yade.wrapper.html

Launchpad - the community forum

Fully searchable forum filled with common errors, and other users solving

similar problems

https://answers.launchpad.net/yade

4

https://answers.launchpad.net/yade

Google

Python problems, Linux problems, Yade problems!

https://www.google.com

5

https://www.google.com

Architectural Overview

The scene

Yade is an object-oriented code:

Everything that the user interacts with is an object

The largest object in Yade is referred to as the scene

The scene is assigned to the variable Omega (O) in the user input script

and it contains all the building blocks for our creation of our simulation.

For example:

https://yade-dem.org/doc/yade.wrapper.html#omega
6

https://yade-dem.org/doc/yade.wrapper.html#omega

The scene

Yade is an object-oriented code:

Everything that the user interacts with is an object

The largest object in Yade is referred to as the scene

The scene is assigned to the variable Omega (O) in the user input script

and it contains all the building blocks for our creation of our simulation.

For example:

O.materials # all user defined materials

O.bodies # all user defined bodies

O.engines # all user defined engines

7

Constructing a scene - materials

The user creates and appends objects to the scene before running any

simulations. A user can create a new FrictMat() material and then

append it to the scene:

sphere_material = FrictMat(young=1e6,

poisson=0.5,

frictionAngle=radians(18),

density=2500,

label='spheres')

O.materials.append(sphere_material)

8

Constructing a scene - bodies

Yade is filled with tools to assist with the creation of all types of bodies

in various geometries. Look in our documentation for all the options:

https://yade-dem.org/doc/yade.pack.html#module-yade.pack

A user may create a sphere() object and append it to the simulation:

sphere = sphere(center=(0, 0, 0),

radius=.5,

fixed=True)

O.bodies.append(sphere)

9

https://yade-dem.org/doc/yade.pack.html#module-yade.pack

Constructing a scene - engines

The Yade DEM O.engine list is the list of algorithms that Yade will

execute for each time-step:

10

Constructing a scene - engines

The Yade DEM O.engine list is the list of algorithms that Yade will

execute for each time-step:

O.engines = [

ForceResetter(),

InsertionSortCollider([Bo1_Sphere_Aabb()]),

InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom()], # geometry

[Ip2_FrictMat_FrictMat_FrictPhys()], # physics

[Law2_ScGeom_FrictPhys_CundallStrack()] # contact

law↪→

),

NewtonIntegrator(gravity=(0, 0, -9.81), damping=0.1)

]

The user may add, edit, and remove many of these different engines.

Some are necessary and others are optional.

11

PyRunner - infinite flexibility

Users can ask Yade to execute custom functions in the O.engines list by

adding a PyRunner():

O.engines = [

ForceResetter(),

InsertionSortCollider([Bo1_Sphere_Aabb()]),

InteractionLoop(

[Ig2_Sphere_Sphere_ScGeom()], # geometry

[Ip2_FrictMat_FrictMat_FrictPhys()], # physics

[Law2_ScGeom_FrictPhys_CundallStrack()] # contact law

),

PyRunner(command="print('kinetic energy,

kineticEnergy())",realPeriod=5)↪→

NewtonIntegrator(gravity=(0, 0, -9.81), damping=0.1)

]

12

Where is the data stored??

Accessing scene data

Information can be gathered from the various objects:

13

Accessing scene data

Information can be gathered from the various objects. For example, the

body state contains a plethora of information:

Note: this visual was generated by running:

yadedaily example.py

and then typing into the ipython prompt:

b = O.bodies[0] # indexing into the bodies container

b.state. # then hit the `tab` key to reveal all

options↪→

This interactive method of investigating available Yade variables can be

used for any object and any method.
14

Accessing scene data

Collecting state variables can be achieved in numerous ways. Primarily,

using the saveDataText() function:

def history():

plot.saveDataTxt('data_collect.txt',

vars=('t','i','pos_x'))

then we add our trusty PyRunner

O.engines=O.engines+[PyRunner(iterPeriod=500,

command='history()',

label='recorder')]

Note: Yade has a plethora of export tools at your disposal available here:

https:

//yade-dem.org/doc/yade.export.html#module-yade.export

15

https://yade-dem.org/doc/yade.export.html#module-yade.export
https://yade-dem.org/doc/yade.export.html#module-yade.export

Plotting scene data

Plotting in Yade is as simple as employing the plot.addData() function

followed by a plot.plot():

def history():

plot.addData(t = O.time, i = O.iter, pos_x =

O.bodies[10].pos[0])↪→

plot.saveDataTxt('data_collect.txt',

vars=('t','i','pos_x'))↪→

O.engines=O.engines+[PyRunner(iterPeriod=500,

command='history()', label='recorder')]↪→

from yade import plot

plot.plots = {'t': ('pos_x', 'b--')}

plot.plot()

Note: Yade has a plethora of plotting tools at your disposal available

here:

https://yade-dem.org/doc/yade.plot.html

16

https://yade-dem.org/doc/yade.plot.html

Plotting scene data

The plot module enables full flexibility for data plotting such as multiple

lines per axis, double y-axes, controlling line type/color etc.

17

Visualizing the scene - Qt

Yade has it’s own GUI feature for rapid scene validation which is invoked

by yade.qt.Controller() or pressing F12.

18

Visualizing the scene - Paraview

Yade exporter can export VTK files for reopening in Paraview

(open-source). This software enables deep data analysis and visualization.

The user simply adds VTKRecorder() to their O.engines list:

O.engines = [

...

VTKRecorder(iterPeriod=1000,

fileName='uniqeId',

recorders=['spheres','facets'],

label='vtkrecorder')

]

Users can explore all the deep functionality of the VTKRecorder() by

going to the documentation:

https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.

VTKRecorder

19

https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.VTKRecorder
https://yade-dem.org/doc/yade.wrapper.html#yade.wrapper.VTKRecorder

Visualizing the scene - Paraview

Paraview has powerful post-processing tools

20

Controlling the simulation!

O.run()

Users can run their simulation (read start iterating on the O.engines

list) by running the command O.run().

run((Omega)arg1[, (int)nSteps=-1[, (bool)wait=False]])

None :↪→

Run the simulation. nSteps how many steps to

run, then stop (if positive); wait will

cause not returning to python until

simulation will have stopped.

↪→

↪→

↪→

21

O.stop()

Users can stop their simulation (read start iterating on the O.engines

list) by running the command O.stop().

22

Endless functionalities to discover

Yade can also:

Import meshes from stl files

Save and load simulations

Create dense packings

Triaxial/uniaxial tests

Couplings (FEMDEM, CFD, PFV)

MPI

Custom contact laws

Variable dependent properties

23

	Resources, resources, resources
	Architectural Overview
	Where is the data stored??
	Controlling the simulation!

