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2.Fully resolved methods

Single-phase Navier-Stokes (FV, LBM, FEM...)
+ no-slip condition: u

f
= u

s
 on the solid phase

+ explicit integration of the drag forces in the DEM
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3. Averaged methods (1)
Two-phase Navier-Stokes

Momentum exchange (a.k.a permeability or drag)

(ex. Ergun)

+ averaging for granular quantities and discretization of the drag force
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3. Averaged methods (2)
Two-phase Navier-Stokes
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3. Averaged methods (3)
An example in 1D (Maurin et al. 2015)
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The art of compromise (part 2)

A variety of methods are being developed to couple the DEM with
fluid flow models. Two main groups of methods emerge (review
paper: Zhu et al. (2007)):

Macro-continuum scale for the fluid (CFD-DEM)

Sub-particle scale for the fluid (DNS-DEM, LB-DEM,
SPH-DEM,...)

Equivalent continuum scale Continuum scale
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The art of compromise (part 2)

Equivalent
continuum scale

DEM Continuum scale (Harthong
et al. (2012))

Equivalent continuum scale Intermediate scale? Continuum scale
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Pore Scale Finite Volumes

DEM-PFV: length scale for the fluid of the order of the particles
sizes, aiming at:

A compromise in terms of computational cost vs. accuracy

An efficient integration scheme for strong poromechanical
couplings
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A closer look at how the fluid flows

The pressure drop along the flow path is highly localized.

(d) Pressure field + velocity (e) Pressure gradient
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PFV: partitionning the pore space

A pore is that part of the void space enclosed in the cell of a
triangulation, in which pressure is approximately constant.

Side note: it is of the upmost importance to employ a suitable type
of triangulation. Delaunay triangulation would be irrelevant for
polydispersed packings. regular triangulation (Pion and Teillaud,
2006) is a solution.
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Incompressible Stokes Flow

Governing equations & num. scheme

Stokes flow:∫
fij
~u∗

w · ~nds = q∗
ij = kij (Pj − Pi )

(u∗
w : relative velocity)

Continuity:∫
∂Ω

~uw · ~nds = 0 (incompressible)

or:
∫
∂Ω

(~u∗
w + ~us ) · ~ndS = 0

linking fluid velocity and deformation rate:∫
∂Ω

~u∗
w · ~nds = V̇i

implicit dependency of P on particles
velocity:∑4

j=1 kij (Pj − Pi ) = V̇i

P solution of the linear system:

KP = EẊ + QBC

Forces on the particles function of P:

Fw = SK−1(EẊ + QBC )



Context of this research One fluid phase Two fluid phases (pendular regime) Toward intermediate water contents Conclusions References

Incompressible Stokes Flow

Governing equations & num. scheme

Stokes flow:∫
fij
~u∗

w · ~nds = q∗
ij = kij (Pj − Pi )

(u∗
w : relative velocity)

Continuity:∫
∂Ω

~uw · ~nds = 0 (incompressible)

or:
∫
∂Ω

(~u∗
w + ~us ) · ~ndS = 0

linking fluid velocity and deformation rate:∫
∂Ω

~u∗
w · ~nds = V̇i

implicit dependency of P on particles
velocity:∑4

j=1 kij (Pj − Pi ) = V̇i

P solution of the linear system:

KP = EẊ + QBC
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Poromechanical coupling

We end up with a discrete analog of the equations of continuum
(Biot’s) poromechanics for incompressible phases (Catalano et al.
(2013)).

Coupling equations of poromechanics in the quasi-static regime:
k∇2p = −∇ · u̇s

∇ · σ′ −∇p + (1− n)(ρs − ρf )g = 0

Our discrete form, locally:∑4
j=1 kij (Pj − Pi ) = V̇i (for a pore i)∑
k f

c
nk + Fw ,n + Wn = 0 (for a particle n)

For the whole system:
KP = EẊ + QBC

Fc + SK−1(EẊ + QBC ) + W = 0
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Benchmark tests

Permeability predictions:
Experiments on mixtures of two-sized glass beads compared to
PFV and empirical/semi-empirical relations (Tong et al., 2012).
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Benchmark tests

Consolidation problem:
Time evolution of a saturated medium under external load

Terzaghi’s theory of
consolidation

Coefficient of consolidation:

Cv =
kEoed

γ
(1)

Consolidation time:

Tv =
Cv t

H2
(2)
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Sediment under stationary waves

Physical model at LEGI, Grenoble
(Michallet et al. (2012), Project C2D2-Hydrofond)

(Courtesy of Hervé Michallet)
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Sediment under stationary waves

Flow regime inside the sediment

Typical values of dimensionless numbers:

Particles Reynolds number: Re ≈ 10−8

Stokes number: Stk →∞ (if relevant)

Mach number: M ≈ 10−8 (numerical model: M = 0)

Steady incompressible viscous flow is a rather good approximation.
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Simulation

DEM-PFV modeling of the sediment (Catalano et al., 2011)

(f) Geometry and
loading

(g) Pressure field in a stable system
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Simulation

Particles velocity and fluid pressure
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Simulation

Particles velocity and fluid pressure (1 image per period)
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Simulation

Progressive build-up of pore pressure
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Simulation

Transient liquefaction comes with a slow consolidation process
we recall: MẌ = Fc + W + SK−1(EẊ + QBC )
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Simulation

Effective stress vanishes (liquefaction)
σ′ = 1

Vσ

∑
k f

c
k ⊗ xk
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Dense supensions

Something is missing. Coupling equation:∑4
j=1 kij (Pj − Pi ) = V̇i

or in conventional geomechanics (also in CFD-DEM couplings):
k∇2p = −∇ · u̇s

PhD Donia Marzougui (Dir. Chareyre B., Chauchat J.
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Dense supensions

Coupling equation:∑4
j=1 kij (Pj − Pi ) = V̇i

or in continuum mechanics (also in CFD-DEM couplings):
k∇2p = −∇ · u̇s
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Dense supensions

Stokesian dynamics turns fluid mechanics into pair interactions,
convenient in a DEM framework
Lubrications forces have been introduced as a first step.
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Summary

Computational 
efficiency

Accuracy
Fully 
resolved

Pore Scale

Averaged
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5. Lubrication
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5. Lubrication
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5. Lubrication
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5. Lubrication
Never “fully” resolved
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5. Lubrication
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5. Lubrication
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5. Lubrication
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5. Lubrication
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Conclusion

- A variety of methods for solving the fluid problem, with 
three different modeling scales: micro-continuum, pore-
scale, macro-continuum (and the corresponding 
assumptions / computational cost).

- Not all methods handle strict incompressibility 
efficiently, which may be a problem for strong poro-
mechanical coupling.

- None of them will capture the lubrication forces, which 
dominates the rheology of fluid-grain mixtures. They 
need to be introduced in addition to the resolved drag 
forces (possibly with some cut-off).


